Drought is a serious environmental stress and the major constraint to rice productivity. The extent of yield losses depend on both severity and duration of the drought stress. Drought affects the morphology of rice crop, eliciting responses at physiological and molecular levels. Improving drought resistance in rice has been made through various approaches including agronomic management practices to improved soil moisture status of the target environment. Primary approach for improving drought tolerance in rice is through yield based selection. Alternatively, secondary traits have been targeted for screening plants; however, many times it shows less correlation with the yield. In addition, efforts have been made for drought mitigation using plant growth regulators and osmoprotectants. Transgenic rice expressing HVA1, LEA proteins, MAP kinase, DREB and endo-1, 3-glucanase has been generated, which has shown better tolerance to drought stress. However, none of these are tested in the target environment; therefore utility of such product still remains obscure. This review presents an overview of different drought types, crop responses at physiological level and various approaches for drought breeding integrating conventional, molecular and genetic engineering. In addition importance of drought mitigation through resource management practices for maximising yield and water productivity is highlighted.
Ayam Gangarani Devi*
ICAR Research Complex for NEH Region, Tripura centre, Lembucherra – 799210, INDIA
Sankar Prasad Das
Anup Das
Gulab Singh Yadav
B.K. Kandpal
Devi, A.G., Das, S.P., Das, A., Yadav, G.S., Kandpal, B.K., 2018. Improving drought tolerance in rice: A mini review. Innovative Farming, 3(4): 198-204.
Babu, R.C., B.D. Nguyen, V. Chamarerk, P. Shanmugasundaram, P. Chezhian. 2003. Genetic analysis of drought resistance in rice by molecular markers: association between secondary traits and field performance. Crop Sci., 43: 1457–1469.
Bartels, D. and R. Sunkar 2005. Drought and salt tolerance in plants. Crit. Rev. Plant Sci. 24: 23-58.
Bernier, J., A. Kumar, R. Venuprasad, D. Spaner and G. Atlin. 2007. A large-effect QTL for grain yield under reproductive-stage drought stress in upland rice. Crop Sci., 47: 507-516.
Bernier, J., G.N. Atlin, R. Serraj, A. Kumar and D. Spaner, D. 2008. Breeding upland rice for drought resistance. J. Sci. Food Agric., 88: 927-939.
Bernier, J., R. Serraj, A. Kumar, R. Venuprasad, S. Impa, V. Gowda, R. Owane, D. Spaner and G. Atlin. 2009 Increased water uptake explains the effect of qtl12.1, a large-effect drought-resistance QTL in upland rice. Field Crops Res., 110: 139-146.
Fu, B.Y., J.H. Xiong, L.H. Zhu, X.Q. Zhao, H.X. Xu, Y.M. Gao, Y.S. Li, J.L. Xu, Z. Li and K. 2007. Identification of functional candidate genes for drought tolerance in rice. Mol. Gen. Genom., 278(6): 599-609.
Blum, A., J.X. Zhang, H.T. Nguyen. 1999. Consistent differences among wheat cultivars in osmotic adjustment and their relationship to plant production. Field Crops Res., 64: 287–291.
Blum, A. 1996. Crop responses to drought and the interpretation of adaptation. Plant Growth Regul., 20: 135-148.
Cabuslay, G.S., O. Ito and A.A. Alejar 2002. Physiological evaluation of responses of rice (Oryza sativa L.) to water deficit. Plant Sci., 163: 815-827.
Chen, T.H.H. and N. Murata. 2002. Enhancement of tolerance of abiotic stress by metabolic engineering betaines and other compatible solutes. Curr. Opinion Plant Biol., 5: 250-257.
Courtois B., L. Shen, Petalcorin, S. Carandang, R. Mauleon, Z.K. Li. 2003. Locating QTLs controlling constitutive root traits in the rice population IAC 165 × Co39. Euphytica, 134:335–345.
FAO. Rice Market Monitor Trade and Markets Division Food and Agriculture Organization of the United Nations 2017. XX (3).
Fujita, Y., M. Fujita, R. Satoh, K. Maruyama, M.M. Parvez, M. Seki, K. Hiratsu, M. Ohme-Takagi, K. Shinozaki and K. Yamaguchi-Shinozaki. 2005. AREB1 is a transcription activator of novel ABRE dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell, 17: 3470–3488.
Garg, A.K., J.K. Kim, T.G. Owens, A.P. Ranwala, Y.D. Choi, L.V. Kochian and R.J. Wu. 2002. Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc. Nat. Acad. Sci. USA, 99: 15898–15903.
Gigon, A., A. Matos, D. Laffray, Y. Zuily-Fodil, and A. Pham-Thi. 2004. Effect of drought stress on lipid metabolism in the leaves of Arabidopsis thaliana (Ecotype Columbia). Ann. Bot. (London) 94: 345–351.
Hu, H., M. Dai, J. Yao, B. Xiao, X. Li, Q. Zhang and L. Xiong. 2006. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc. Nat. Acad. Sci. USA 35: 12987– 12992.
IRGSP (International Rice Genome Sequencing Project) 2005. The map-based sequence of the rice genome. Nature, 436: 793-800.
Ito, Y., K. Katsura, K. Maruyama, T. Taji, M. Kobayashi and M. Seki. 2006. Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol. 47: 141–153.
Jang I.C., S.J. Oh, J.S. Seo, W.B. Choi, S.I. Song, C.H. Kim, Y.S. Kim, H.S. Seo, Y.D. Choi and B.H. Nahm. 2003. Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose- 6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress-tolerance without stunting growth. Plant Physiol., 131: 516–524.
Kamoshita, A., R.C. Babu, N.M. Boopathi and S. Fukai. 2008. Phenotypic and genotypic analysis of drought resistance traits for development of rice cultivars adapted to rainfed environments. Field Crops Res., 109: 1-23.
Karaba, A., S. Dixit, R. Greco, A. Aharoni, K.R. Trijatmiko, N. Marsch Martinez N., A. Krishnan, K.N. Nataraja, M. Udayakumar and A. Pereira. 2007. Improvement of water use efficiency in rice by expression of HARDY, an Arabidopsis drought and salt tolerance gene. Proc. Nat. Acad. Sci., 104:15270–15275.
Kondo, M., M.V.R. Murty and D.V. Aragones. 2000. Characteristics of root growth and water uptake from soil in upland rice and maize under water stress. Soil Sci. Plant Nutr., 46: 721-732.
Kumar, R., R. Venuprasad and G.N. Atlin. 2007. Genetic analysis of rainfed lowland rice drought tolerance under naturally-occurring stress in eastern India: heritability and QTL effects. Field Crops Res., 103: 42-52.
Lafitte, H.R., A.H. Price and B. Courtois. 2004. Yield response to water deficit in an upland rice mapping population: associations among traits and genetic markers. Theor. Appl. Gen., 109: 1237-1246.
Lambers H.F., Stuart-Chappin III, and T.L. Pons 2000. Plant Physiological Ecology. Springer-Verlag, New York, USA, pp. 540.
Lang-Mladek, C., O. Popova, K. Kiok, M. Berlinger, B. Rakic and W. Aufsatz, W. 2010. Transgenerational inheritance and resetting of stress-induced loss of epigenetic gene silencing in Arabidopsis. Mol. Plant., 3: 594–602.
Mackill, D., W. Coffman and D. Garrity. 1996. Rainfed Lowland Rice Improvement. International Rice Research Institute, Manila, Philippines.
McCouch, S. 2004. Diversifying selection in plant breeding. PLoS Biol., 2: e347-e347.
McNally K.L., K.L. Child, R. Bohnert, R.M. Davidson, K. Zha, V.J. Ulat, G. Zeller, R.M. Clark, D.R. Hoen, Bureau, Stokowski, D.G. Ballinger, K.A. Frazer, D.R. Cox, B. Padhukasahasram, C.D. Bustamante, D. Weigel, D.J. Mackill, R.M. Bruskiewich, G.R. Tsch, C.R. Buell, H. Leung and J.E. Leach. 2009. Genomewide SNP variation reveals relationships among landraces and modern varieties of rice. Proc. Nat. Acad.Sci. USA, 106: 12273–12278.
Mugo, S.N., M. Banziger and G.O. Edmeades. 1999. Prospects of using ABA in selection for drought tolerance in cereal crops. In: Ribaut, J.-M., and D. Poland, editors, Molecular approaches for the genetic improvement of cereals for stable production in water-limited environments. June 1999. CIMMYT, Mexico. 73- 78.
O’Toole, J.C. 2004. Rice and water: The Final Frontier. First International Conference on Rice for the Future. 31 August- 2 Sept 2004, Bangkok, Thailand.
Oh, S.J., S.I. Song, Y.S. Kim, H.J. Jang, S.Y. Kim and M. Kim. 2005. Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol., 138: 341–351.
Pandey, S. and H. Bhandari. 2009. Drought: economic costs and research implications. In J. Serraj, J. Bennet and B. Hardy, eds., Drought frontiers in rice: crop improvement for increased rainfed production. World Scientific Publishing, Singapore, 3-17.
Price, A.H., K.A. Steele, B.J. Moore and R.G.W. Jones 2002. Upland rice grown in soil-filled chambers and exposed to contrasting water deficit regimes. II. Mapping quantitative trait loci for root morphology and distribution. Field Crops Res., 76: 25–43.
Septiningsih, E.M., A.M. Pamplona, D.L. Sanchez, C.N. Neeraja, G.V. Vergara, S. Heuer, A.M. Ismail and D.J. Mackill. 2009. Development of submergence-tolerant rice cultivars: the Sub1 locus and beyond. Annals Bot., 103: 151-160.
Snapp, S. 2002. Quantifying farmer evaluation of technologies: the mother and baby trial design. In M.R. Bellon and J. Reeves eds., Quantitative analysis of data from participatory methods in plant breeding. DF: CIMMYT. Mexico, 9-17.
Venuprasad, R., C. Dalid, M. Del Valle, M.E. Bool, D. Zhao, M. Espiritu, T. Sta. Cruz, M. Amante, G. Atlin and A. Kumar. 2009. Identification and characterization of large-effect quantitative trait loci (QTL) for grain yield under lowland drought stress in rice using bulk-segregant analysis (BSA). Theor. Appl. Gen., 120: 177-190.
Vikram, P., B.P.M. Swamy, S. Dixit, M.T. Sta Cruz, H.U. Ahmed, A.K. Singh, A. Kumar. 2011. qDTY1.1, a major QTL for rice grain yield under reproductive-stage drought stress with a consistent effect in multiple elite genetic backgrounds. BMC Genetics, 12: 89.
Xiong L. and Y. Yang. 2003. Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. Plant Cell, 15, 745–759.
Xiong, L. and J.K. Zhu. 2002. Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Env., 25: 131–139.
Xu, K., X. Xia, T. Fukao, P. Canlas, R. Maghirang-Rodriguez, S. Heuer, A.M. Ismail, J. Bailey-Serres, P.C. Ronald and D.J. Mackill. 2006. Sub1A is an ethylene response factor-like gene that confers submergence tolerance to rice. Nature, 442: 705-708.
Yue, B., L. Xiong, W. Xue, Y. Xing, L. Luo and C. Xu. 2005. Genetic analysis for drought resistance of rice at reproductive stage in field with different types of soil. Theor. Appl. Gen., 111: 1127–1136.