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Big data analytics is revolutionizing predictive pest modelling by enhancing the 
accuracy and timeliness of pest management strategies. This paper explores 
the integration of big data techniques with various pest modelling approaches, 
including phenology models, life table models, pest simulation models and 
mathematical models. Phenology models leverage large datasets to predict the 
timing of pest life stages, facilitating proactive control measures. Life table models 
utilize extensive demographic data to understand pest population dynamics and 
inform sustainable management practices. Pest simulation models, powered by 
big data, simulate complex interactions within ecosystems, offering insights into 
potential pest outbreaks under different environmental scenarios. Additionally, 
mathematical models provide a robust framework for quantifying pest behaviour 
and predicting future infestations. By harnessing the power of big data analytics, 
these models can significantly improve the precision and effectiveness of pest 
management, ensuring better crop protection and yield optimization.
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1. Introduction
Insect pests in agriculture cause significant crop damage, especially in 
tropical regions where they can lead to losses up to 60-70% (Thomas, 1999). 
These pests, which damage crops, livestock and human health, negatively 
impact agricultural production, market access and the environment. The 
unpredictable weather and biotic stresses further threaten crop yields, 
leading to substantial economic and societal losses. To address the growing 
food demand, precision agriculture using big data offers a solution. Big 
data can develop accurate forecasting models, optimizing crop production. 
Predictive analytics, in particular, helps extract trends and insights from 
data to enhance agricultural outcomes.
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Big data refers to vast sets of information that surpass the capabilities 
of current tools for effective analysis. It is characterized by its size and 
complexity. Size is determined by the number of data sources; while 
complexity involves the relationships and arrangements within the data. Big 
data analytics involves multiple steps. First, define the data requirements, 
which outline the purpose of acquiring the data. Second, collect the data 
through experiments or from publicly available sources. Third, process the 
data into a presentable format. Fourth, perform extrapolative or interpolative 
trend analysis to predict trends within and beyond the data range. Finally, 
model the data to create a general formula or relationship.
Big data analytics has revolutionized pest management by enabling the 
development of predictive models that forecast pest outbreaks (Balduque-
Gil et al., 2023), pest generations (Swarupa Rani and Jyothi, 2020), 
population dynamics (Feng et al., 2010), decision making in managing 
pests (Rao et al., 2021), damage/impacts caused by pests, etc. (Donatelli 
et al., 2017). Big Data Analytics for Predictive Pest Modelling involves the 
use of advanced data analytics techniques to predict pest outbreaks and 
their potential impact on crops. By analysing vast amounts of data from 
various sources, including weather patterns, soil conditions, crop health and 
pest behaviour, researchers and farmers can make informed decisions to 
manage and mitigate pest-related risks effectively. This chapter highlights 
the importance of big data, its collection, analytics and finally how it helps 
in forming a model that helps in predicting the insect-pests and discusses 
about previously established models that are being used around the world 
to monitor the insect-pests.

2. Big Data Analytics
An important aspect of big data analytics is the computation of predetermined 
algorithms in order to solve certain types of problems. In recent years, artificial 
intelligence has been widely used in various agricultural applications. In 
this field, artificial intelligence (AI) is used to enable machines to think and 
make decisions without human assistance. Machine Learning (ML) is also 
a part of AI. It makes use of the algorithms that use statistical learning and 
construct systems that are capable of learning and improving without any 
further programming.
Deep learning (DL) is an advanced subset of machine learning (ML) that 
mimics the human brain’s processing of information with artificial neural 
networks, which mimic the anatomy of human brains. By learning from 
examples, DL enables computer models to sift through vast datasets to 
classify and predict information. Techniques such as big data analytics, 
digital methods and climate and weather informatics are crucial in enhancing 
agricultural production (Ramesh et al., 2020).

3. Structure of Big Data Analytics in Agriculture
Across the globe, big data is increasingly being utilized in the agriculture 
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sector, although it has historically lagged behind other industries in adopting 
big data analytics. Farm equipment is generating vast quantities of data that 
includes climatic, edaphic and crop information, thanks to the integration 
of GPS, sensors and Internet of Things (IoT). In today’s world, mobile and 
sensor technologies are transforming traditional practices through the use of 
digital information and big data analytics.Public and private organizations are 
leveraging historical agricultural data to develop precise crop management 
strategies that enhance input efficiency, crop productivity and economic 
profitability. As a result of these efforts, Decision Support Systems (DSS) 
tools are being developed that use data analytics and IoT in order to optimize 
farming inputs and maximize profits. The CGIAR consortium, alongside 
platforms like Agritask, exemplifies this push towards data-driven agriculture 
by providing actionable insights through the integration of various data 
sources.
Climate-related risks in agriculture can be understood and mitigated through 
big data analytics. For instance, in rainfed farming, where 80% of production 
variability is due to rainfall fluctuations, big data can augment traditional 
weather forecasts and climate projections, helping to reduce risks from 
insect-pests and severe climatic factors, thereby benefiting the farming sector.
Big data analytics in agriculture necessitate expertise from various 
fields, including agronomy, climate science, digital design and human-
computer interaction (Van De Gevel et al., 2020). The three most important 
characteristics of big data are its volume, velocity and variety. The volume 
concept refers to data sets that are so large that conventional database tools 
cannot handle them, especially as IoT and sensor data sizes increase, from 
terabytes to petabytes. As the term implies, velocity refers to the ability to 
acquire, process and interpret data in real time, driven by advancements 
in mobile broadband, high-resolution agricultural data and affordable 
computing power. These developments have sparked interest in using Big 
Data for improving productivity and managing risks in agriculture.

4. Data Acquisition
Acquiring high-quality, real-time and diverse data (including weather, soil, 
data on insect-pests and crop information) is essential for leveraging AI in 
agriculture. The methods for obtaining this data include:
4.1. Field Data Collection
Field data collection involves gathering data from research undertaken areas, 
farmers’ fields by researchers and progressive farmers. These extensive 
datasets, often held by public organizations, can also come from state and 
private sector surveys. However, they can be structured or unstructured 
and accessibility varies. Challenges for Big Data analysis include data 
quality issues, lack of protocols for sharing data and limited incentives to 
share. The lack of geo-referencing, discontinuity and difficulty in extracting 
historical datasets make it necessary for data scientists to develop methods 
for preparing historical datasets for analysis. Despite the difficulties, this 
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effort is crucial for validating models created using other methods of data 
acquisition.
4.2. Sensors
A variety of sensors can be integrated into farm equipment such as tractors, 
handheld devices and field installations, forming part of a digitally-integrated 
farm system. These sensors, including e-kisan tablets, tiny needle-like 
sensors and polymer-based sensors, require extensive evaluation under field 
conditions to ensure their effectiveness.
4.3. Multispectral Data from Satellites and Unmanned Air Vehicle
The use of remote sensing in agriculture is widely spread because it provides 
valuable information about land features. It is useful for identifying crops, 
estimating acreage, determining planting dates, identifying pests and 
diseases and assessing crop conditions. Farmers can maximize productivity 
and efficiency by using remote sensing data in conjunction with historical 
data. According to the FAO, pests and diseases cause 20-40% of global crop 
yield losses annually. Agrichemical use can be reduced by precision pest 
targeting with technologies like robotics and drones.

5. Big Data Analytics in Predictive Pest Modelling
As insects are exothermic, they are incapable of regulating their internal 
temperature, making their development dependent on their surrounding 
environment. Researchers often study insect population dynamics by 
modelling temperature-dependent growth. Such models can be modelled 
effectively with rate summation (Stinner et al., 1974). Degree-day summation 
is the most common model for predicting development rates assumes a linear 
relationship between development rate and temperature, which is highly 
effective at optimum temperature levels (Allen, 1976). The linear model posits 
that rates are proportional to temperature, so the amount of development is 
the integral of temperature (or a linear function of it) over time, measured in 
degree-days. Additionally, insects can be modelled by using developmental 
time to predict temperature-related development. Traditional development 
models are based on biochemical and biophysical properties, but utilizing 
rate rather than time can bring complications.
Earlier models often overlooked the variation in development rates among 
individual insects, which influences the spread of pest activity. Significant 
models now consider mean rate versus temperature relationships and the 
distribution of development times. Rather than treating rate summation 
as deterministic, stochastic approaches view rates as random variables. 
These models differ in the random variable chosen and the form of the 
frequency distribution applied. Rate distribution coefficients seem relatively 
temperature-independent, meaning that one distribution can describe 
development rates across 113 insect and mite species in 80% of the data sets 
(Shaffer, 1983). The Monte Carlo simulation model can be used for insects 
that undergo diapause or aestivation during its life cycle (Phelps et al., 1993).
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Biological development of insect-pests must not be linearly correlated with 
temperature, since extreme temperatures can be lethal to some organisms. 
In order to describe inhibition at high and low temperatures, as well as 
both extremes, non-linear development rate functions based on enzyme 
kinetics were developed (Sharpe and DeMichele, 1977). Stinner et al. (1974) 
produced another nonlinear model based on an inverted sigmoid curve above 
the optimal temperature and they modified it for asymmetric properties. 
Schoolfield et al. (1981) enhanced the Sharpe and DeMichele model for 
better utility and simpler parameter estimation. It was noted that nonlinear 
development and cyclical temperatures could cause deviations from linear 
models, especially at extreme temperatures (Worner, 1992). The Stinner’s 
model was found to be the best match for Russian wheat aphid development 
rates (Ma and Bechinski, 2008). However, According to Ma (2010), Russian 
wheat aphid development is influenced by temperature and stage of plant 
growth as per the results provided by survival analysis model.

6. Phenology Models
Crop pest phenology models are useful for predicting their development and 
emergence. These models are based on the principle that the growth and 
development of insects are influenced by environmental factors, primarily 
temperature. By tracking cumulative heat units, often expressed as degree 
days, phenology models can forecast the timing of various life stages of pests, 
such as oviposition period, larval or nymphal development, nature of pupation 
and emergence of adult insects. Phenology models are essential for predicting 
insect development events, aiding in the understanding of pest population 
dynamics in various environmental conditions. Accurate predictions depend 
on precise temperature recordings and development durations (Danks, 2000). 
The degree-day model has long been used to make decisions about when to 
spray and when to scout for pests in decision support systems. In addition 
to predicting exotic pest establishment, these models have also been used in 
risk analysis (Jarvis and Baker, 2001). Another model, CLIMEX which isn’t 
a complete phenology model, provides a framework to assess risks based on 
development. Using another model known as NAPPFAST, phytosanitary risk 
maps can be customized using climate data and biological models. Resources 
such as the Crop Protection Compendium provide comprehensive insect 
development summaries. Additionally, the University of California State-wide 
IPM program offers detailed development data for insects on their website, 
which can be utilized in degree-day models. In vineyards, phenology models 
based on degree days are used to predict the emergence and development 
of grape berry moths, allowing for targeted application of insecticides and 
mating disruption techniques (Balduque-Gil et al., 2023).
Dal and Arora (2019) identified lower threshold temperatures for various 
life stages of H. armigera on tomatoes, aiding in predicting phenology and 
potential outbreaks for timely control. They used two linear models for 
development prediction of damage causing larval stages. They developed a 
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Simple Linear Model (SLM), Y = a+bT, which calculates lower development 
threshold temperature (To) and degree-days (DD) accumulated. ‘Y’ in 
equation represents the development rate of test insect, ‘T’ indicates mean 
temperature, a depicts development rate when temperature is at 0 ºC and 
slope value is indicated by ‘b’. Another model, Ikemoto-Takai Model (ITM) 
also calculates To and DD. Using equations 1 and 2, they calculated the 
standard error of means for To and DD, respectively (Kontodimas et al., 2004).

SETo=
r s2 2SEb

bN.r2b √ + [ ........................... (1)

SEDD= SEb
b2

........................... (2)

Where, s2 = residual mean square of r; r = mean of the sample; N = size of 
the sample; b = linear equation’s coefficient. In addition to the development 
rates and their respective mean temperatures, a nonlinear model developed 
by Kontodimas was developed whose mathematical equation is shown below.
1
D =a× (temp-tmin)

2 × (tmax - temp)........................... (3)

Where, 1/D= rate of the development of insect; D = larval and pupal period of 
H. armigera at specific mean temperature; temp = mean temperature; tmax = 
maximum threshold temperature; tmin = minimum threshold temperature; 
a = coefficient.
Results from the experiment conducted by Dal and Arora (2019) found that 
the Ikemoto-Takai model estimated lower threshold temperatures for the 
egg, larva and pupa stages of H. armigera at 9.9 °C, 7.8 °C and 12.3 °C, 
respectively, indicating that daily mean temperatures below these values 
are likely fatal. The Kontodimas nonlinear model predicted maximum 
threshold temperatures of 32.5 °C for eggs and 37.8 °C for larvae. These 
findings help inform timely, need-based control measures for H. armigera. 
The mathematical model, equations, algorithms vary depending on crop, 
pest’s nature, variables, etc.
While phenology models are powerful tools, they are based on historical 
weather data and specific developmental thresholds, which may vary 
geographically and with changing climate conditions. Therefore, local 
calibration and validation are essential to ensure accuracy. Additionally, 
integrating phenology models with other pest management tools, such 
as pheromone traps and remote sensing, can enhance their predictive 
power and reliability. In conclusion, phenology models play a crucial role 
in integrated pest management by providing predictive insights into insect 
pest development and aiding in the optimization of control strategies. By 
accurately forecasting pest life cycles, these models help mitigate crop 
damage and improve agricultural productivity.

7. Population Models and Life Tables
Life table models are vital tools in entomology and pest management that 
track the survival, development and reproduction of insect populations. By 

[
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providing a detailed breakdown of the life cycle stages and mortality factors 
affecting a pest population, these models offer valuable insights for predicting 
population dynamics and informing control strategies. Ecological life tables 
are essential tools for examining the population dynamics of insects with 
discrete generations. They involve recording sequential measurements to 
track changes in the insect’s population throughout its life cycle in their 
habitat (Morris and Miller, 1954). They systematically present survival and 
mortality data for a known cohort. Long-term, carefully planned population 
studies with accurate measurements of all relevant factors are crucial for 
constructing realistic population models.
Life-table analysis establishes models that mimic reality by identifying 
and measuring factors that cause mortality which includes both density-
dependent and density-independent factors. Multiple regressions are used 
to examine interactions between different age intervals within a survival 
model. It is possible to predict the average insect population level or changes 
in the insect population density based on the equations derived from the 
results. There are, however, limitations to these methods when dealing 
with insects that have overlapping generations. Life table analysis has been 
used to assess survival, development and distribution of the aphid species, 
Diuraphisnoxia Kurdjumov (Ma andBechinski, 2008). Many ecological studies 
cannot provide reliable population peaks predictions due to gaps in ecological 
databases, such as dispersal patterns, overwintering, colonization patterns 
and interspecies competition. Zalucki et al. (2017) used the DYMEX modelling 
package to study the effects of climate on the population dynamics of an 
age-structured diamondback moth (DBM) population. Their results showed a 
strong climate influence on DBM population changes, with natural enemies 
significantly reducing pest pressure. The severity of the pest problem varied 
notably with cropping practices; large-scale production units that implement 
production breaks and maintain strict post-harvest hygiene experienced 
lower pest pressure.

8. Pest Simulation Models and Decision Support Systems
Pest simulation models are sophisticated tools that predict the behavior, 
population dynamics and impacts of insect pests on crops. These models 
integrate various factors, including environmental conditions, pest biology 
and crop phenology, to simulate potential pest outbreaks and inform 
management decisions. The use of mathematical models to simulate 
environmental influences on biological data can be applied to many different 
situations and environments. These models, supported by computer 
programs, enhance understanding of population dynamics and facilitate 
timely pest management decisions. They can be tested, refined, sensitivity 
analyzed and validated across a variety of environmental conditions. In order 
to understand pest-plant interactions, detailed descriptions of cropping 
systems are essential (Colbach, 2010).
The use of systems models or prediction schemes helps assess control, 
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sustainability and risks as well as management actions (Strand, 2000). 
For example, the HEAPS model (Helicoverpa armigera and Punctigera 
Simulation) in Australia integrates habitat structure and pest population 
dynamics, simulating movement of adults within a local cropping ecosystem. 
An estimation of populations within a grid is based on the movement of 
adults, the oviposition of females, their development, their survival and 
the phenology of hosts provided by this model. Originally developed by the 
Australian cotton industry from 1976 to 1993, EntomoLOGIC, a decision 
support tool for insect control, reduced risks associated with chemical pest 
management. Developed by CSIRO and the University of Western Sydney, 
it has evolved into CottonLOGIC, now available on Palm OS handhelds that 
is being used by the farmers growing cotton in Australia.
The MORPH suite of predictive computer models, developed at Horticulture 
Research International in the UK, is used for fruits and vegetable crops. The 
ECAMON model, for example, explains 70% of the variation in critical growth 
phases of crops based on daily weather parameters (Trnka et al., 2007). It 
accurately predicted European corn borer’s presence based on characteristic 
symptoms in the Czech Republic from 1961-1990 and explained increased 
damage during warm periods of 1991-2000, predicting an expansion of 
this niche in the next 20-30 years. The RICEPEST model, developed by the 
International Rice Research Institute (IRRI), Philippines, simulates yield 
losses due to insect-pests of rice in tropical regions of Asian continent and 
has shown promising results in field experiments (Willocquet et al., 2002). 
Thus, models that can be accessed via the web and decision support systems 
are becoming increasingly important in IPM.
Mesoscale modelling techniques are used by US and Dutch commercial firms 
to forecast insect development on farms and for regional pest management. 
A decision-support system which forecasts black bean aphid outbreaks 
in spring-sown beans considers regional forecasts and specific field and 
crop characteristics, including a module for aphicide use and economic 
calculations. SOPRA, a pest management tool is used in Switzerland and 
southern Germany to effectively control eight of the most important insects 
that attack fruit trees, predicting crucial management events based on local 
weather data (Hohn et al., 2007). The SIMLEP forecasting model is being 
used to forecast Colorado potato beetle, Leptinotarsa decemlineata Say in 
many European countries, has significantly improved pest control measures 
(Kos et al., 2009).
CIPRA (Computer Centre for Agricultural Pest Forecasting), developed in the 
mid-1990s, provides real-time weather data to forecast pests and diseases for 
apple crops (Figure 1). These bioclimatic models range from simple degree-
days approaches to detailed epidemiological models, aiding field specialists 
in managing the pests of apple (Bourgeois et al., 2008). Kranthi and Kranthi 
(2004) developed a stochastic model, ‘Bt-Adapt,’ to simulate the resistance 
development of Helicoverpa armigera to Cry1Ac toxin in Bt-cotton under 
Indian conditions. Simulations predicted resistance could develop in 11 
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to 54 years based on Bt-cotton use and pest control practices. The study 
recommends strategies to delay resistance, including reducing surviving 
pest populations on Bt-cotton and using alternate host crops as refuges to 
prolong the effectiveness of Bt-cotton.
Let’s take another example. Kumari et al. (2013) worked on forecasting 
productivity and pod damage by H. armigera in pigeonpea (Cajanus cajan) 
using an Artificial Neural Network (ANN) model. This model was developed 
using time series data from 1985-86 to 2011-12, collected from multiple 
centres in the North East Plain Zone (NEPZ) of India. The performance of the 
model was validated using mean squared error (Equation-4) and multiple 
correlation coefficients, showing a good fit between observed and predicted 
values, thereby demonstrating the model’s reliability in forecasting pest 
impact on pigeonpea crop. In order to develop neural network architectures, 
Levenberg Marquardt (LM) Algorithm was used as a training algorithm of 
weight matrixes.
E (x,w)= 1

2 ∑P
p=1

M
m=1e2 p.m∑  ........................... (4)

Where, ‘P’ = number of patterns; ‘M’ = number of outputs; ‘ep,m’ = training 
error at output m when applying pattern ‘p’; ep,m = dp,m - op,m; ‘d’ is the desired 
output vector and ‘o’ is the actual output vector. The results indicated that 
the ANN model successfully forecasted pod damage and productivity for the 
2012-13 period with values of 26.29% and 1137.40 kg ha-1, respectively.

Big Data Analytics for Predictive Pest Modelling

Figure 1: Overview on the working pattern of CIPRA model (Bourgeois et 
al., 2008)
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Table 1: Recent case studies pertaining to predictive pest modelling using big 
data analytics
Sl. 
No.

Application Algorithm Factors 
involved

Outcomes Refe-
rences

1. To ascertain 
population 
dynamics of 
Bactrocera 
dorsalis and 
Ceratitis spp. 
in Avocado

Fuzzy 
Neural 
Network

Weekly pest 
counts, 
rainfall, 
average 
temperature, 
relative 
humidity, and 
avocado plant 
physiological 
stages

The FNN 
models 
demonstrated 
satisfactory 
predictive 
capabilities, 
with most 
achieving R² 
values greater 
than 0.85

Ibrahim 
et al. 
(2022)

2. To predict 
infestation of 
litchi stink 
bugs

Machine 
learning 
models like 
KNN, SVM

Environmental 
data, on-site 
pest surveys

Used to predict 
infestation of 
Litchi stink 
bugs on longan 
plantations 
with an 
accuracy rate of 
85%

Chen 
et al. 
(2022)

3. Impact of 
environmental 
factors on 
rice diseases 
and insect 
pests (DIP) 
using big data 
analytics

Principal 
component 
analysis

Terrain, 
temperature, 
precipitation, 
and light

Predicted DIP 
occurrence and 
trends, noting 
that higher 
temperatures 
and changing 
precipitation 
patterns 
promote pest 
and disease 
proliferation.

Chen 
and 
Wang 
(2020)

4. To predict the 
population 
of the yellow 
stem borer 
(YSB) in rice 
fields

Multilayer 
Perceptron 
(MLP) 
and Long 
Short-Term 
Memory 
(LSTM) 
neural 
networks

Light-trap data 
and weather 
parameters

LSTM model 
proved to 
be a more 
robust tool for 
developing an 
early warning 
system for YSB 
outbreaks, 
aiding in 
timely pest 
management 
and protecting 
rice crops from 
significant yield 
losses

Bapatla 
et al. 
(2024)
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Sl. 
No.

Application Algorithm Factors 
involved

Outcomes Refe-
rences

5. Big data 
analytics to 
analyze FAW 
density and 
distribution 
in sub-
Saharan 
Africa

Big data 
analytics 
(Data 
mining)

Temp-
erature, 
rainfall, 
wind 
speed

The study found 
FAW density to be 
highly sensitive 
to climate and 
host vegetation. 
Predictive models 
achieved 53% overall 
accuracy

Guimapi 
et al. 
(2022)

6. Predicting 
pest 
generations 
under varying 
climate 
conditions 
using big 
data mining

MarkSim 
climate 
generator, 
REP tree 
classi-
fication

Weather 
con-
ditions, 
Data on 
insect-
pest

Emphasized the 
value of combining 
data mining, 
classification, 
and prediction 
techniques to 
forecast pest 
generations

Rani and 
Jyothi 
(2020)

7. To predict the 
population 
of the yellow 
stem borer 
(YSB) in rice 
fields

Long 
Short-
Term 
Memory 
(LSTM) 
neural 
networks

Data on 
dead 
hearts 
and white 
heads and 
climatic 
data

Efficiently predict 
rice stem borer 
damage 

Wahyono 
et al. 
(2020)

8. Predictions 
of population 
dynamics of 
Tribolium-
confusum 
and Calloso-
bruchus 
chinensis

Ricker’s 
classic 
equation

Tem-
perature 
and hum-
idity

Indicated significant 
changes in pest 
status during 2071-
2100 under IPCC's 
A2 and B2 climate 
change scenarios

Estay 
et al. 
(2008)

9. Predictive 
models to 
manage 
greenhouse 
whitefly 
populations

ARIMA 
and 
ARIMAX 
models

Whitefly 
count and 
environ-
mental 
variables

ARIMAX to be 
superior in 
predicting normal 
and moderate levels 
of daily increase in 
whitefly count

Chiu 
et al. 
(2019)

10. Prediction 
of rice 
gall midge 
populations

Machine 
learning 
models 
(ANN, 
SVR)

Insect 
count and 
climato-
logical 
factors

ANN with exogenous 
variables (ANNX) 
model significantly 
outperformed the 
SVR model in 
predicting gall midge 
population

Rathod 
et al. 
(2022)
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9. Conclusion
In conclusion, the application of big data analytics for predictive pest modelling 
represents a significant advancement in agricultural pest management. By 
leveraging vast datasets and sophisticated analytical techniques, one can 
achieve more accurate and timely predictions of pest outbreaks which are 
showcased by recent publications that have come up with pest prediction 
models using big data (Table 1). This proactive approach not only enhances 
crop protection but also optimizes resource use and minimizes environmental 
impact. As technology continues to evolve, integrating big data analytics into 
pest management strategies will become increasingly essential, fostering 
sustainable agriculture and ensuring food security in the face of growing 
global challenges.
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