Article: RT954

Biotica Research

Today Vol 4:4 259 2022 264

Bioactive Components in Seagrasses: A Novel Biomedicine

Ulaganathan Arisekar^{*}, Robinson Jeya Shakila, Rajendren Shalini, Balasubramanium Sivaraman and Thamizhselvan Surya

Dept. of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tamil Nadu Fisheries University, Tuticorin, Tamil Nadu (628 008), India

Corresponding Author

Ulaganathan Arisekar e-mail: harimfsc2525@gmail.com

Keywords

Anti-cancer activity, Anti-HIV properties, Bioactive molecules, Seagrasses

Article History Received on: 11th April 2022 Revised on: 18th April 2022 Accepted on: 19th April 2022

E-mail: bioticapublications@gmail.com

How to cite this article?

Arisekar *et al.*, 2022. Bioactive Components in Seagrasses: A Novel Biomedicine. Biotica Research Today 4(4): 259-264.

Abstract

eagrasses are also utilized as an alternative or supplementary medicine to treat various pathological conditions, including muscle aches, wounds, abdominal pain, indigestion, hangover, and mental disorders. There is, however, no comprehensive collection of existing research on their ethnopharmacological uses, nutritional value, pharmacological propensities, and bioactive components. Consequently, the focus of the study is on elaborating on the phytochemical composition and biological properties of various seagrass species, such as antioxidant and antibacterial activity. The phytochemical substances isolated from different seagrasses show various biological activities, including cytotoxicity against cancer cell lines, anti-human immunodeficiency virus (HIV), antibacterial and skin regeneration characteristics. Seagrass research has a critical gap that this review addresses. However, the mechanism of action for compounds with high biological activity has not been thoroughly explored, while technical developments in biological assays have not been adequately addressed. Finally, this study summarises the bioactive components in seagrasses and their properties to use as biomedicine.

Introduction

Traditional practitioners have long used medicinal and herbal plants to treat a wide range of illnesses in the context of primary healthcare. Researches into the phytochemicals found in medicinal plants are currently underway, as 80% of the world's population relies on these therapies to manage various diseases (Kim *et al.*, 2021). Research in marine plants' pharmacology is still minimal, even though the marine environment is home to a wide range of organisms that could originate from bioactive molecules (Kim *et al.*, 2021).

Seagrasses are halophytes, rooted marine angiosperms that can complete their life cycles even if they are immersed in water for long periods. They are the only flowering plants that have recolonized the seafloor, and their presence helps to ensure food security while also helping to slow the effects of climate change. Millions of marine creatures depend on seagrasses, and the plants themselves aid in sediment stabilization. Several vulnerable species, including dugongs, turtles, and sea horses, use them as a feeding and nesting site. Sea cucumbers, sea urchins, starfishes, clams, and sponges are all common inhabitants in seagrass beds. There are 72 known species of seagrass in the world. Studies on the chemical components and relative food value of seagrasses were sparked by the relatively low levels of direct grazing. Seagrasses have been used to cure many diseases, including fever, skin disorders, muscle aches, wounds, and gastrointestinal issues, as tranquilizers for infants. Based on the scientific evidence, seagrasses have a wide range of interesting biological activities, including antibacterial,

259

antiparasitic, antimalarial, vasoprotective, anti-inflammatory, antioxidant, anti-HIV, anti-aging, and antialgal effects (Nuissier *et al.*, 2008).

Phytochemical Analysis

E stensive research has been done to determine the presence of various chemical substances in the seagrasses. Phenolic substances are extensively diversified in marine plants and attributed to several biological functions. Examples of natural products isolated from *Zostera* marina *L*. (eelgrass) include the flavone sulfates, the sulfates of luteolin, diosmetin, and apigenin, the disulphate of luteolin, and several non-sulfated phenolic acids, such as p-coumaric, ferulic, vanillic, and gentisicacids (Table 1). *Halophila ovalis, H. beccarii,* and *H. pinifolia* could combat bacterial infections. *Halodule pinifolia* showed the most efficacy against all pathogens, while *Cymodocea rotundata* was found to have a minor antifouling effect against the bacterial strains.

Table 1: Bioactive compounds in		
Bioactive molecules	Seagrasses	Biological activity
Rutin	T. ciliatum	Antioxidant, Antiviral and Cytotoxicity against cancer cell lines
Asebotin,	T. ciliatum	Antioxidant, Antiviral and Cytotoxicity against cancer cell lines
3- hydroxyasebotin	T. ciliatum	Antioxidant, Antiviral and Cytotoxicity against cancer cell lines
Quercetin-3-O-ß-D- xylopyranoside	T. ciliatum	Antioxidant, Antiviral and Cytotoxicity against cancer cell lines
Catechin	T. ciliatum	Antioxidant, Antiviral and Cytotoxicity against cancer cell lines
Apigenin	E. acoroides	Antifeedant, antibacterial, and antilarval activities
Cymodienol	C. nodosa	Antibacterial activity against methicillin-resistant (MRSA) strains
Thalassiolins A (luteolin 7-O-ß- D-gluco- pyranosyl-20 -sulfate)	T. testudinum, T. hemprichii	Antifouling activity, Anti-HIV activity
Thalassiolins B	T. testudinum, T. hemprichii	Anti-HIV activity, antioxidant and skin- regenerating activities
Thalassiolins C	T. testudinum	Anti-HIV activity
Thalassiolins A (luteolin 7-O-ß-D- gluco- pyranosyl-20 -sulfate)	T. testudinum	Antifouling activity
Cinnamic acid	P. oceanica	Antifouling activity
Coumaric acid	P. oceanica, Z. marina, T. testudinum, H. pinifolia, T. hemprichii	Antioxidant activity
Caffeic acid	P. oceanica, Z. marina, T. testudinum, T. hemprichii, T. ciliatum	Antioxidant, Antiviral and Cytotoxicity against cancer cell lines
Stigmasta-4,22-dien-6b-ol-3-one	E. acoroides	Antifeedant
Stigmasta-4,22-diene-3,6-dione	E. acoroides	Antibacterial and antilarval activities
Stigmast-22-en-3-one	E. acoroides	Antifeedant
Stigmasta-5,22-dien-3-O- β -D-glucopyranoside	E. acoroides	Antibacterial and antilarval activities
Daucosterol	E. acoroides	Antifeedant
Hexacosyl alcohol	E. acoroides	Antibacterial and antilarval activities
p hydroxy-benzaldehyde	E. acoroides	Antifeedant
Deoxycymodienol	C. nodosa	Antibacterial activity against methicillin-resistant (MRSA) strains
Isocymodiene	C. nodosa	Antibacterial activity against methicillin-resistant (MRSA) strains
Nodosol	C. nodosa	Antibacterial activity against methicillin-resistant (MRSA) strains

Data obtained from Kim *et al.* (2021)

Antimicrobial Properties

Description of the second second second second second sector of the sect

extracts from *H. minor*. Analysis was carried out on three seagrass species for antibacterial activities against human pathogens: *Staphylococcus aureus*, *Bacillus cereus*, *Bacillus subtilis*, *Escherichia coli*, *Salmonella paratyphi*, *Salmonella typhimurium* and *Micrococcus luteus*, among others (Table 2). Methanolic and ethyl acetate extracts were the most efficient at destroying bacteria. The antifeedant, antibacterial, and antilarval properties of the chemical constituents of the ethanol extracts were studied. It was discovered that eleven pure substances, comprising four flavonoids and five sterols, have strong antifeedant, antimicrobial, and antilarval properties (Kannan *et al.*, 2013). *Halophila stipulacea*, *Halodule pinifolia*, and *Cymodocea serrulata* seagrasses were assessed for their antibacterial properties, and the methanol extract of *H. pinifolia* showed the greatest activity.

		seagrasses and their effect			
Pharmacological activity	Type of Extract	Species	in vivo/ in vitro	Model	
Antimicrobial	Aqueous methanol extract	E. acoroides, T. hemprichii, H. pinifolia, S. isoetifolium, C. serrulata, C. rotundata, C. nodosa, R. cirrhosa	In-vitro	S. aureus, Vibrio cholerae, Shigella dysentri Shigellabodii, S. paratyphi, P. aeruginosa, pneumoniae	
	Hexane, chloroform, methanol	H. stipulaceae, H. pinifolia, C. serrulata	In-vitro	S. aureus, V. cholerae, Shigella dysentriae, Shigella bodii, S. paratyphi, P. aeruginosa, K. pneumoniae	
	Hexane, chloroform, methanol	H. stipulaceae, H. pinifolia, C. serrulata	In-vitro	Phytopathogens - Macrophominaphaseolina, Collitotrichumcapsici, Fusarium sp., Aspergillus flavus, Pseudomonas aeruginosa	
	Chloroform, ethyl acetate, ethanol and hexane	H. ovalis, C. serrulata, H. pinifolia	In-vitro	E. coli, Enterococcus faecalis, Corynebacterium, Bacillus subtilis Pseudomonas aeruginosa, Klebsiella pneumonia, Methicillin Sensitive Staphylococcus aureus, Methicillin Sensitive Staphylococcus saphrophyticus, Methicillin Sensitive Staphylococcus epidermidis	
	Ethyl acetate and hydrophilic (water- soluble)	E. acorioides, H. minor	In-vitro	Lindrathalassiae, Dendryphiella salina	
	Petroleum ether, chloroform, ethyl acetate, acetone, methanol water	C. serrulata, H. ovalis, Z. capensis	In-vitro	Halophytophthora spinosa, Schizochytriumaggregatum, Pseudoaltermonas bacteriolytica	
	Methanol extract	S. isoetifolium	In-vitro	Bacillus cereus, B. megaterium	
	Petroleum ether, Chloroform fraction, butanol fraction	S. Isoetifolium, H. ovalis, H. pinifolia	In-vitro	B. megaterium, Proteus vulgaris, Streptococcus lactis, Staphylococcus aureus, Aspergillus niger, M. anisopliae	
	Methanol, hexane extract	E. acoroides, C. nodosa, P. oceanica, Z. noltii	In-vitro	Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumonia	
				Table 2: Continue	

261

Pharmacological activity	Type of Extract	Species	in vivo/ in vitro	Model
-	Ethanol, methanol extract	H. pinifolia, C. serrulata	In-vitro	Candida albicans, Aspergillus niger
	Methanol, ethanol, butanol, water, acetone extracts	C. rotundata	In-vitro	Flavobacterium sp., Cytophaga sp.
	Ethanol, methanol, acetone, dichloroethane	C. serrulata, S. isoetifolium	In-vitro	S. paratyphi, Shigella sp., S. mutants, S. aureus, P. fluorescens
	Diethyl ether, acetone, methanol extracts	H. ovalis, H. pinifolia	In-vitro	Acenetobacter sp., S. typhii
	Ethyl acetate: methanol (1:1) extract	T. testudinum, H. wrightii, S. filiforme, H. decipiens, R. maritima	In-vitro	Micrococcus sp., Shigella sonii, V. cholerae, Staphylococccus sp., Proteus vulgaris, P. mirabilis, P. aeruginosa, Salmonella paratyphi-B
	Lipid and water soluble phenolic extracts	H. ovalis, H. beccari, H. pinifolia	In-vitro	Fish pathogens - Bacillus subtilis
	Ethanol extract and fractions	C. serrulata	In-vitro	Aeromonas hydrophila, Vibrio parahaemolyticus, Serratia sp., V. harveyii
	Ethanol extract and fractions	C. serrulate, T. testudinum	In-vitro	E. coli, Staphylococcus, sp., Salmonella sp
	90% Aqueous methanol	C. rotundata	In-vitro	B. cereus, Bacillus circulans, Bacillus pumilus, Pseudomonas vesicularis, Pseudomonas putida
Larvicidal	Methanol extract	H. ovalis	In-vitro	Human pathogens Brine shrimp bioassa
	Petroleum ether, Chloroform fraction	S. Isoetifolium, H. ovalis	In-vitro	Brine shrimp bioassay
	Aqueous ethanol	S. isoetifolium, C. serrulata, H. ovalis	In-vitro	Aedes aegypti larvae
Cerium Binding Activity	Pectin	Z. marina, Phyllospadixi watensis	In-vitro	Can be used as the removal of radioisotopes from the human body
Anti- inflammatory	Methanol extract, Hexane fraction, DCM fraction, Sub fraction H5	Z. japonica	In-vitro	In-vitro
Antiviral	Isolated compounds	Thalassia testudinum	In-vivo	HIV integrase inhibition test
	Methanol/ toluene (3:1) extract	C. nodosa, P. oceanica, Z. noltii	In-vivo	Herpes simplex virus, type I
	70% Aqueous ethanol	T. hemprichii	In-vitro & In- vivo	(HSV) cultured in kidney cells of monke (CV-I), vesicular stomatitis virus (VSV) in kidney cells of hamster (BAK)
	70% Aqueous ethanol	T. hemprichii, H. pinifolia	In-vitro	
	Antimitotic	Methanol/ toluene (3:1) extract	In-vitro	Encephalomyocarditis virus
Antimitotic	Methanol/ toluene (3:1) extract	C. nodosa, P. oceanica, Z. noltii	In-vitro	(EMCV)
Cytotoxic	Methanol/ toluene (3:1) extract	C. nodosa, P. oceanica, Z. noltii	In-vitro	Vero cells, Kidney cells of monkey (CV-1

Pharmacological activity	Type of Extract	Species	in vivo/ in vitro	Model
	Aqueous methanol extract	H. pinifolia, S. isoetifolium, C. serrulata, C. rotundata	In-vivo	Brine shrimp bioassay
Antioxidant	Pectin	Z. marina	In-vivo	Lipid peroxidation
	Pectin	Z. marina	In-vitro	Ferric reducing antioxidant power
	Pectin	Z. marina	In-vivo	Lipid peroxidation
	Ethanol extract	E. acoroides	In-vitro	TAA, DPPH, FRAP assay
	Aqueous methanol	E. acoroides, T. hemprichii, H. pinifolia, Syringodium isoetifolium	In-vitro	TLC antioxidant assay
	Methanol extract	Halodule pinifolia, Halophila ovalis, S. isoetifolium, T. hemprichii, C. serrulata	In-vitro	Radical scavenging activity
	Ethanol extract	E. acoroides, H. ovalis, H. ovate, H. stipulacea, T. hemprichii, S. isoetifolium, C. serrulata, H. pinifolia	In-vitro	TAA, DPPH, FRAP assay
	Methanol, ethyl acetate, n-hexane	T. hemprichii, C. rotundata, E. acoroides, S. isoetifolium	In-vitro	DPPH radical assay
	Methanol extract	H. ovalis	In-vitro	Radical scavenging assay
Antidiabetic, antioxidant and vasoprotective	Ethyl acetate fraction	P. oceanica	In-vivo	Glucose tolerance test, Liver
Haemolytic activity	Aqueous methanol extract	E. acoroides, T. hemprichii, H. pinifolia	In-vivo	Human erythrocyte

Data obtained from Kim *et al.* (2021)

Antioxidant Properties

A arine plants and animals have a wide range of fascinating biological characteristics. Natural antioxidants have been isolated from various plants, including oilseeds, a cereal crop, vegetables, spices, and herbs. An abundance of antioxidant molecules can be found in seagrasses. A 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical assay on the isolated elements of the four seagrasses taken from the Gulf of Mannar to evaluate antioxidative characteristics showed that antioxidant activities were comparatively stable in all seagrasses tested (Kannan *et al.*, 2013). *Posidonia oceanica*, a plant native to the western Mediterranean, demonstrated enhanced enzyme activity for antioxidant GST (Glutathione Sulfotransferase).

A wide range of bioactive metabolites may be found in seagrasses, which are an important source of varied metabolites from the natural world (Table 1 and 2). There were two diarylheptanoids found in the *Cymodocea nodosa* plant, cymodiene and cymodienol, which were both found to be potent cytotoxic agents (Table 1). *Thalassia testudinum* yielded three anti-HIV compounds: Thalassiolins A, B, and C. The ethyl acetate fraction of *Z. marina* yielded apigenin-70b-D-glucoside, chrysoeriol, and luteolin. It was found that these chemicals had antioxidant and anti-aging characteristics. The cyclitol free L-chiro-inositol (LCI) was isolated from the *Syringodium filiforme*, which is a very unusual natural occurrence. Seagrass detritus *Zostera noltii* and *Zostera marina* were evaluated as a new zosteric acid and rosmarinic acid source, while Chicoric acid was found in the leaves of *Posidonia oceanica* and Syphonosid in *Halophila stipulacea*.

Conclusion and Future Perfectives

Researchers found that seagrasses produce a wide range of nutrients and bioactive compounds, including antioxidants, antibacterials, and cancer-fighting agents. For example, the Caribbean seagrass *Thalassia hemprichii* and *Thalassia testudinum* both contained powerful cytotoxic and anti-HIV properties, respectively, in the form of the thalassiolins A and B. Seagrass metabolites may give important leads for creating future drugs. A lack of information on seagrasses means further research is needed to confirm empirical results. Furthermore, a scarcity of enzymatic and in vivo investigations on chronic diseases, such as diabetes,

inflammatory disorders, and skin-related maladies, was discovered following a thorough literature search. As a result, additional research into the therapeutic potential of seagrasses is essential. Natural products obtained from seagrasses should be tested in animal models for safety and efficacy before being tested in clinical trials to create new medicines.

Acknowledgment

he merit fellowship that the first author got from TNFU (Tamil Nadu Fisheries University) as part of his Ph.D degree program has been acknowledged.

References

Kannan, R.R.R., Arumugam, R., Iyapparaj, P., Thangaradjou,
T., Anantharaman, P., 2013. In vitro antibacterial,
cytotoxicity and haemolytic activities and phytochemical

analysis of seagrasses from the Gulf of Mannar, South India. *Food Chemistry* 136(3-4), 1484-1489.

- Kim, D.H., Mahomoodally, M.F., Sadeer, N.B., Seok, P.G., Zengin, G., Palaniveloo, K., Khalil, A.A., Rauf, A., Rengasamy, K.R., 2021. Nutritional and bioactive potential of seagrasses: a review. *South African Journal* of Botany 137, 216-227.
- Nuissier, G., Diaba, F., Grignon-Dubois, M., 2008. Bioactive agents from beach waste: *Syringodium flotsam* evaluation as a new source of I-chiro-inositol. *Innovative Food Science & Emerging Technologies* 9(3), 396-400.

