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ABSTRACT 

Plant viruses are ubiquitous in nature, and humans and animals are often exposed 

to them in different ways. Some plant viruses show high persistence, but these 

viruses are currently thought to be immuno-restrictive, and plant and animal 

viruses have distinct limitations in terms of host specificity and disease. 

Therefore, plant viruses are not considered pathogens to vertebrates, including 

humans. However, many studies have shown the ability of plant viruses to 

circulate and replicate in insect populations, raising an important question: Can 

plant viruses cross kingdom boundaries? Do they harm human health? Although 

structural and functional similarities between some plant and animal viruses are 

well-documented, cross-border infections remain a problem. The current 

literature suggests the need for comprehensive, large-scale studies of interactions 

between plant and animal viruses, especially humans, to assess their potential for 

disease. The aim of this review is to examine the current understanding of the 

biology of plant viruses and their impact on human and animal health, and to 

highlight areas for further research. 
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INTRODUCTION 

Viruses that influence plants are plant viruses, which 

make a serious danger to agricultural and 

horticultural produce (Soosaar et al., 2005). These 

are ultramicroscopic, acellular, mesobiotic entities 

that don't have the sub-atomic hardware to replicate 

without a host. The majority of plant viruses are 

made up of protein coats and nucleic acid. Tobacco 

mosaic virus (TMV) was the first reported virus. 

Ivanovski (1892) discovered that even after passing 

through Chamberland filter candles, the infectious 

qualities of mosaic disease-affected leaf sap remain 

intact. Beijerinck (1898) uncovered that the 

causative agent of Tobacco mosaic had the option to 

relocate and considered the separated irresistible 

substance a "Virus" and gave the expression 

"Contagium vivum fluidum". From that point 

forward, different plant viruses were found and 

classified into 3 orders, 22 families, 108 genera and 

1019 species (WHO, 2015). Most plant viruses are 

transmitted through vectors. Plant infection by 

viruses has a few advantages too. They are utilized 

for designing viral vectors and as the wellspring of 

biomaterials and nanotechnology gadgets. The 

principal recorded use of plant viruses is to upgrade 

the magnificence of decorative plants. Plant viruses 

are likewise utilized for cross-protection, weed and 
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pest biocontrol, utilitarian genomic studies, genome 

altering, crop quality treatment blooming enlistment 

and so on. Aside from these benefits, these plant 

viruses are no less destructive to their hosts. In 

greater part of cases, viruses are harmful and cause 

serious diseases in crops which hamper the harvest 

quality and yield. The symptoms created by plant 

viruses are mosaic, chlorosis, putrefaction, leaf 

twist, leaf roll, vein clearing, mottle, crinkling, 

enation, rosetting, hindering, phyllody, puckering 

and so on. 

Animal viruses, on the other hand, are typically 

referred to as viruses that infect animals. Such 

infections are caused by intracellular agents that 

totally depend on the host cell for propagation and 

afterwards pass on the host cell to contaminate other 

host cells. There are a variety of viruses that can 

infect various organs of the body, sometimes 

causing no symptoms at all and other times causing 

extremely dangerous symptoms. Other vertebrate 

viruses can infect humans, causing diseases like 

rabies, yellow fever and others (zoonotic infections). 

In this article, close relatedness between some plant 

virus and animal virus is examined momentarily. 

The crossing point of plant infections and human 

well-being is an emerging field that features both the 

likely advantages and dangers related to these 

viruses. While generally seen as dangerous to 

farming, ongoing examination shows that plant 

viruses might have applications in medication, 

especially in immunization advancement and 

restorative protein creation. 

Security and Biocompatibility 

Plant viruses, for example, virions and virus-like 

particles (VLPs), are viewed as safe for people and 

animals, showing no replication in vertebrates. They 

are biodegradable and can be dispensed with from 

organic entities, making them appropriate for 

biotechnological applications (Nikitin et al., 2016). 

Environmental Effect 

Plant viruses assume a pivotal part in biological 

system security, possibly forestalling excess of 

homogeneous plant populaces and advancing host 

adaptation. Their associations with hosts can prompt 

mutualistic connections, albeit the degree of these 

collaborations stays under investigation (Lefeuvre et 

al., 2019). 

Applications in Medicine 

The potential of infectious plant virus clones in 

molecular breeding and as pharmaceutical 

production vectors is being investigated (Brewer et 

al., 2018). Customary plant-based prescriptions are 

additionally being researched for their antiviral 

properties, especially with regard to COVID-19 

(Prajapati et al., 2020). 

In spite of these promising applications, worries 

about the natural dangers of hereditarily changed 

plant viruses continue, requiring cautious biosafety 

assessments. In this context, this article explores the 

critical question: Are plant viruses harmful to human 

beings? 

UNIFORMITY BETWEEN PLANT AND 

ANIMAL VIRUSES 

Many similitudes exist between some animal and 

plant viruses. Quality succession correlations and 

protein examinations give more proof that 

transformative connections exist among animal and 

plant viruses, independent of the size of the 

molecule (isometric or bar molded) or whether they 

have a monopartite or multipartite genome. 

Tymoviridae, Bunyaviridae, Rhabdoviridae, 

Reoviridae families contain both plant and 

vertebrate viruses including human. Three genera 

(Fijivirus, Oryzavirus and Thytoreovirus) of the 

family Reoviridae infect the two plants and bugs 

(Keller and Jonard, 2004). Rotavirus of the family 

Reoviridae causes gastroenteritis in people (Choi et 

al., 2013). Essentially, Rabies infection, caused by 

viruses from the family Rhabdoviridae and 

infections such as Hantaan and Toscana, which 

belong to the family Bunyaviridae, are pathogenic to 

humans (Tordo et al., 2010; Kallio-Kokko et al., 

2006). 

A significant number of plant viruses that rely upon 

insect vectors for their duplication and sent by 

circulative transmission are gathered in families 

which likewise contain animal viruses. The 

structural and genetic similarities between the 
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cowpea mosaic virus (CPMV) of the Secoviridae 

family, the Coxsackie virus, the polioviruses and the 

Theiler's murine encephalomyelitis virus of the 

animal picornaviruses lend credence to the idea that 

these animal and plant viruses share a common 

ancestor (Lin et al., 2000; Koudelka et al., 2009). 

Some plant virus genera contrast from animal-

infecting genera because of the presence of an 

additional quality that code for a development 

protein (Deom et al., 1992). For instance, under the 

family Rhabdoviridae, genera infectious to animals, 

for example, Vesiculovirus, Lyssavirus, 

Novirhabdovirus and Ephemerovirus vary from 

plant infecting genera like Nucleorhabdovirus and 

Cytorhabdovirus (Benitez-Alfonso et al., 2010). In 

view of RNA polymerases phylogeny, Hepatitis E 

virus, a human virus was gathered with a plant virus, 

i.e., beet necrotic yellow vein virus (Koonin, 1991). 

Endogenous viral elements (EVE) near plant viruses 

having a place to the family Virgaviridae were seen 

in the genome of Aedes aegypti, Drosophila 

rhopaloa and Bombyx terrestris. EVE found in 

Aedes aegypti was the same as the tobamovirus 

genome. However, this Aedes aegypti isn't a bug 

vector for tobamovirus (Cui and Holmes, 2012). 

During the nectar collection process, there was a 

possibility that the insect would interact with the 

virus-infected plant. RdRp of +ve ssRNA and 

dsRNA infections contaminating the two - the insect 

and plant comprise of amino corrosive succession 

and three-dimensional construction which 

recommend the normal base of these viruses (Ng et 

al., 2008). Gibbs and Weiller (1999) detailed that 

few similitudes exist between the ssDNA genomes 

of circoviruses that infect vertebrates and the 

nanoviruses that contaminate plants. They likewise 

discovered some proof that a phytovirus switched 

hosts and contaminates a vertebrate and afterwards 

rejoins with a vertebrate-infecting virus. The 

purpose of this host switch is the openness of a 

vertebrate to the sap of a plant that is contaminated 

(Gibbs and Weiller, 1999). 

The investigation of viruses uncovers interesting 

likenesses and contrasts among plant and animal 

viruses, testing conventional orders. Late exploration 

demonstrates that the two gatherings share normal 

developmental beginnings and hereditary highlights, 

recommending a more bound together 

comprehension of virology. 

Normal Parentage and Hereditary Similitudes 

Many plant and animal viruses have homologous 

qualities fundamental for viral replication, 

demonstrating a common transformative history 

(Dolja and Koonin, 2011). Quality arrangement 

correlations show huge developmental connections 

among plant and animal RNA viruses, no matter 

what their underlying differences are (Goldbach, 

1987). 

Systems of Transmission 

Both plant and animal viruses can spread 

straightforwardly between cells; however the 

components for this movement contrast. Plant 

viruses use plasmodesmata because of inflexible cell 

walls, while animal viruses might frame virological 

neurotransmitters between cells (Ritzenthaler, 2011). 

Transformative Elements 

The development of these viruses can be credited to 

three situations: normal family, level exchange 

through vectors and equal advancement from related 

hereditary elements (Dolja and Koonin, 2011). The 

dynamic nature of viral evolution across various 

hosts is highlighted by this complexity. 

Despite these resemblances, the distinct interactions 

between viruses and their respective hosts cause 

distinct evolutionary pressures, which in turn 

produce diverse behaviours and adaptations. This 

continuous examination keeps on reshaping how we 

might interpret viral scientific categorization and 

development. 

DISSIMILARITY BETWEEN PLANT 

VIRUSES AND ANIMAL VIRUSES 

There are numerous distinctions among plant and 

animal viruses which infer that a boundary is there 

which isolates these viruses either to animals or 

plants. The morphologies and genome designs of 

some plant and animal viruses show some 

uniqueness (Hogenhout et al., 2008). The 

instruments utilized by plant and animal viruses for 

entry into the cell and for engendering from one cell 
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to another vary (Fereres and Raccah, 2009). For 

entry into the plant, plant viruses need to cross the 

inflexible cell wall. They enter through wounds 

created by insect-pests, through contaminated seeds 

and furthermore mechanically during a few 

horticultural practices. According to Lazarowitz 

(2007), some phytoviruses can be transmitted 

directly into the phloem or through aphids, 

whiteflies, mites, fungi and nematodes. Then, 

plasmodesmata aid in the spread of plant viruses 

from one cell to the next, requiring a movement 

protein that is encoded in the plant virus genome 

(Taliansky et al., 2008). Interestingly, different 

connections happen between cell receptors and 

animal virus before entry into the animal cell by 

endocytosis and combination (Klempner and 

Shapiro, 2004; Yamauchi and Helenius, 2013). 

Rather than this multitude of contrasts plant viruses 

rely upon insect vectors for their transmission. A 

larger part of these bug vectors belongs to the order 

Hemiptera that incorporates thrips, planthoppers, 

whiteflies, aphids and leafhoppers (Hogenhout et al., 

2008). These insect vectors transmit viruses and help 

virus families having a wide host range. Because of 

the presence of some particular protein, these 

phytoviruses likewise can contaminate invertebrate 

vectors. The vector cell permissivity relies upon the 

presence or absence of glycosylated protein G for 

Potato yellow dwarf virus and for Rice dwarf virus a 

P2 protein freak stops the virus contamination in the 

bug (Gaedigk et al., 1986; Tomaru et al., 1997). A 

plant virus by and large gets transmitted through 

bugs by two strategies: circulative transmission and 

non-circulative transmission. Plant viruses can 

repeat in their vectors which make them kind of 

infectious bugs. During this transmission cycle, 

some bugs show variation in their way of behaving 

which recommends that plant viruses might be 

irresistible for the bugs. For instance, the male 

taking care of conduct of Frankliniella occidentalis 

has been modified in light of Tomato spotted wilt 

virus (Stafford et al., 2011). Moreover, when 

Bemisia tabaci was infected by tomato yellow leaf 

curl virus, it brings about a decrease in bug's life 

span and fecundity (Rubinstein and Czosnek, 1997). 

This multitude of discoveries makes whether or not  

some plant viruses further cross the realm line for 

section and replication in vertebrates. In the mark of 

reality, assuming the phylogenetic distance is 

considered among plants and bugs or warm-blooded 

animals; it shows up extremely challenging for 

viruses to cross the realm line first from plants to 

bugs than from plants to any well-evolved animals 

(Koonin, 2010; Roger and Simpson, 2009). 

The dissimilarities among plant and animal viruses 

are established in their primary, useful and 

developmental attributes. Despite having some 

genetic elements in common, the infection and 

replication processes of these two types of viruses 

are vastly distinct. 

Underlying Contrasts 

Plant viruses frequently have unbending designs that 

work with development through plant cell walls by 

means of plasmodesmata, though animal viruses use 

more adaptable components, like virological neural 

connections, to spread between host cells 

(Ritzenthaler, 2011). The capsid proteins of plant 

and animal viruses show checked contrasts, 

mirroring their unmistakable transformative ways 

and host interactions (Dolja and Koonin, 2011). 

Replication Systems 

Animal DNA viruses ordinarily exploit cell 

apparatus for record and replication, frequently 

undermining cell pathways, while plant viruses have 

advanced extraordinary methodologies that line up 

with their host's cell architecture (Gutierrez and 

Martínez-Salas, 2001). The two assemblies have 

single-stranded RNA and DNA viruses, yet their 

transformative rates and populace elements can 

fluctuate fundamentally, with some plant viruses 

showing archaic origins (Gibbs et al., 2010). 

Conversely, the similarities in hereditary parts 

recommend a common transformative history, 

demonstrating that both plant and animal viruses 

might have developed from normal predecessors or 

through even trait transfer (Dolja and Koonin, 2011). 

This intricacy features the many-sided connection 

between viruses and their hosts across various 

natural realms. 
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EXPOSURE OF HUMANS AND ANIMALS TO 

PLANT VIRUSES 

Humans and animals are exposed to plant viruses 

through the food varieties that are infected with 

plant viruses. Tobacco Mosaic virus infects around 

150 plants including tomato, pepper and cucumber. 

A few plant viruses are likewise present in items 

which are delivered from plant sources. Colson et al. 

(2010) found 57% of the 28 pepper-based foods 

containing PMMoV RNA that could still infect 

health plants. Around 107 viral duplicates ml-1 were 

additionally recognized in Tabasco sauce. It is 

reasonable to assume that phytoviruses may be 

present in our faeces because we consume these 

foods. Since old times individuals utilize 

conventional strategies for managing diseases. 

Through the ingestion of natural medication people 

can likewise be exposed to phytoviruses (ICTV, 

2015). TMV is available in cigarettes as it is 

impervious to manufacturing processes (Smith, 

1957) let alone its presence in raw chewing tobacco. 

Mean TMV RNA titer was viewed as 9.5log10 RNA 

duplicates per cigarette and 3.8log10 RNA duplicates 

ml-1 in the spit of smokers (Balique et al., 2012). 

Smoking is extremely damaging and is another risk 

factor for exposure to phytoviruses (Bothwell, 1960; 

Chyle et al., 1971). These phytoviruses are likewise 

found in the climate including water, mists, hazes 

and soil (Rosario et al., 2009; Yolken et al., 2014). 

Tomato mosaic virus (ToMV) of family 

Virgaviridae was recognized in depleting the water 

of woods strands of New York (Jacobi and Castello, 

1991) and in 140,000 year-old frigid ice in drill 

destinations of Greenland (Castello et al., 1999). In 

Slovenia, this ToMV was also found in irrigation 

systems. Melon necrotic spot virus has been found in 

water system set-ups in Spain (Gosalvez et al., 

2003). Tomato bushy stunt virus and Cucumber 

green mottle mosaic virus were recognized from 

Thames and Yamuna separately and these viruses 

were pathogenic to healthy plants (Tomlinson and 

Faithfull, 1984; Vani and Varma, 1993). This 

indicates that these viruses may persist in the 

environment, thereby increasing their capacity for 

transfer and dispersal. 

Exposure to plant viruses can fundamentally 

influence both human and animal well-being, 

essentially through zoonotic transmission and food 

pollution. Understanding these elements is pivotal 

for general well-being and agrarian practices. 

Zoonotic Transmission from Animals 

Numerous zoonotic infections start from animals, 

with warm-blooded animals like bats and trained 

species being key sources. Spillover risks increase as 

a result of increased human-animal interactions 

brought on by habitat loss and wildlife exploitation 

(Johnson et al., 2020). Hepatitis E virus (HEV) 

represents this, as it may very well be communicated 

from pig to people, featuring the potential for getting 

humans diseased through consumption of 

contaminated meat (Goens and Perdue, 2004). 

Plant Virus Effect on Herbivores 

Phytoviruses, like the White clover mosaic viruses, 

can adjust plant qualities, influencing herbivore 

conduct. Infected plants might discharge different 

unpredictable mixtures, making them less appealing 

to herbivores, which could by implication impact 

biological system dynamics (van Mölken et al., 

2012). 

The interaction between plant viruses and herbivores 

suggests a complex ecological balance that requires 

more research, despite the fact that zoonotic diseases 

typically receive the majority of the attention. 

Understanding these cooperations can illuminate 

methodologies to alleviate risks related to both 

human and animal exposure to viruses. 

EVIDENCE OF PERSISTENCE OF PLANT 

VIRUSES IN MAMMALS INCLUDING 

HUMANS 

Phytoviruses have been found in mammals, 

including humans, in a number of studies. Three 

days after feeding the cow infected cucumbers, 

Cucumber green mottle mosaic virus was discovered 

in the cow's dung in 1988 (van Dorst, 1988). 

Individuals from the family Luteoviridae, 

Secoviridae, Tymoviridae and Partitiviridae were 

tracked down in Bat guano. Likewise, some viruses  
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of the family Secoviridae, Geminiviridae, 

Partitiviridae, Luteoviridae, Tymoviridae, 

Nanoviridae and Tombusviridae were found in 

mouse, vole and rodent stools (Phan et al., 2011). By 

qRT-PCR, Pepper mild mottle virus was identified 

in 7 out of 15 waste examples from Chicken, 1 out 

of 10 from Geese and 1 out of 6 from cows, at titers 

up to 3.1log10 duplicates mg-1 (Hamza et al., 2011). 

It was accounted that cows, jackasses and grass 

rodents lead to Rice yellow mottle virus (Sarra and 

Peters, 2003) and that sheep communicate the 

underground clover mottle virus (MCkirdy et al., 

1998). Additionally, numerous viral pathogens have 

been isolated from gastroenteritis patients' faeces. 

These are Citrus tristeza virus, Tobacco mosaic 

virus, Tomato ragged stunt virus, Carnation mottle 

virus, Oat chlorotic trick virus, Melon necrotic spot 

virus, Maize chlorotic mottle virus, Grapevine speck 

virus, Eggplant mosaic virus, Pepper mild mosaic 

virus, Panicum mosaic virus and so forth (Zhang et 

al., 2006; Nakamura et al., 2009). 

The proof of plant virus' persistence in well-evolved 

animals, including humans, is an emerging area of 

exploration. Certain plant viruses have mechanisms 

that allow them to survive in mammals, despite 

being traditionally associated with plants. These 

mechanisms may have an impact on health 

outcomes. 

Transmission Instruments 

Some plant viruses, for example, those in the 

Furoviruses and Bymoviruses groups, can be 

communicated by insect vectors and may make due 

in their bodies for expanded periods (Watson and 

Roberts, 1939). This proposes a potential for these 

viruses to enter mammalian frameworks through 

well-established orders of things or natural exposure. 

Because they facilitate the movement of viruses into 

host cells, which may include mammalian cells 

under certain conditions, viral coat proteins play a 

crucial role in transmission (Campbell, 1996). 

Zoonotic Potential 

Ongoing examinations demonstrate that specific 

microsporidian diseases, such as Encephalitozoon 

intestinalis, have been distinguished in warm-

blooded animals, suggesting zoonotic transmission 

pathways that could include plant viruses. Humans 

have been exposed to a variety of viral agents, some 

of which may have originated from plant sources, 

influencing immune responses and disease 

susceptibility, according to the evolutionary history 

of viruses (van Blerkom, 2003). 

Wellbeing Suggestions 

The circuitous proof connecting viral contaminations 

to diseases, for example, different sclerosis 

recommends that plant viruses could assume a part 

in comparable constant circumstances through 

relentless diseases or resistant intervened damage. 

While the immediate proof of plant viruses in warm-

blooded animals stays restricted, the potential for 

transmission and well-being suggestions warrants 

further examination. 

PRESENCE OF PHYTOVIRUSES IN HUMAN 

SAMPLES 

A few bits of proof show that plant viruses are 

available in human examples. Tomato bushy stunt 

virus (TBSV) was refined and consumed by human 

workers in 1982. Symptoms of the infection were 

induced when their faeces were inoculated on 

Quinoa leaves (Tomlinson et al., 1982). During the 

1950's-1970's, few investigations detailed that TMV 

is available in human lungs and uncovered that it 

plays a part in cellular breakdown in the lungs 

(Bothwell, 1960). TMV was retrieved from 15 out of 

35 sputum examples and ¼ thoracentesis liquids 

from smokers having respiratory diseases (LeClair, 

1967) and furthermore in the lungs of smokers who 

handled or exposed themselves to tobacco leaves 

(Falk, 2011). Recently, tobacco plant DNA was 

found in the Bronchoalveolar Lavage of incubator-

bound patients (Bousbia et al., 2010). Constant PCR 

was utilized and PMMoV was distinguished in waste 

examples of 22 (7.2%) out of 304 grown-ups 

(Colson et al., 2010). A connection was likewise 

seen between the presence of PMMoV in stools and 

a few clinical signs. As a matter of fact, in 39% of 

PMMoV-positive patients and in 13% of PMMoV-

negative patients fever was recorded and in 39% of 

PMMoV-positive patients and in 7% of PMMoV-
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negative patient's stomach torment was noticed. In 

any case, no particular relationship was uncovered 

between the presence of PMMoV and clinical side 

effects. These side effects might be because of the 

eating of an abundance of pepper or food items 

containing pepper. TMV RNA was additionally 

distinguished in 45% of smokers' spit tests while all 

non-smokers' salivation tests were found to be 

negative and cigarettes from different brands were 

tracked down TMV positive (Balique et al., 2012). 

The environmental routes by which these viruses can 

spread make the presence of phytoviruses in human 

samples a complicated matter. While direct proof of 

phytoviruses contaminating people is limited, their 

presence in water sources raises worries about 

possible circuitous openness. 

Natural Presence of Phytoviruses 

• Phytoviruses are many times tracked down in 

ecological waters, especially in streams and 

lakes, where they can endure because of their 

strength and high focuses in infected plants 

(Koenig, 1986). 

• These viruses can be sent through debased water, 

particularly in regions lacking flying vectors, 

which might incorporate human openness 

through ingestion or contact with polluted water 

(Koenig, 1986). 

• Studies have demonstrated that human enteric 

viruses, such as noroviruses, are prevalent in 

river and treated wastewater, suggesting that 

waterborne transmission routes could also 

facilitate the spread of phytoviruses (Maunula et 

al., 2012). 

• The location of viral genomes in water does not 

necessarily correspond to potential risk, 

accentuating the requirement for a cautious 

understanding of viral presence in human-related 

contexts (Gassilloud et al., 2003). 

While the immediate effect of phytoviruses on 

human well-being stays questionable, their 

ecological strength and potential for waterborne 

transmission warrant further examination concerning 

their epidemiological importance. 

CONCLUSION 

The cumulative evidence suggesting the potential of 

plant viruses as human pathogens warrants targeted 

research. Currently, there is no definitive 

information indicating that plant viruses are fatal to 

humans or animals. For a plant virus to be 

pathogenic to humans, it must be shown that the 

virus is capable of entering human cells, replicating 

in the cell and satisfying Koch's pathogenicity 

hypothesis. 

Humans have been dealing with plant diseases for 

thousands of years, and our reliance on plants 

reinforces the widespread belief that these viruses 

are safe for humans. However, some plant viruses 

may still play a role in human disease. Although 

there is currently no clear evidence to classify plant 

viruses as human pathogens, their indirect negative 

effects on human health cannot be ruled out. 

Overall, it is important to advance research in this 

area. Comprehensive studies are needed to provide 

clear evidence of the disease of plant viruses in 

humans and to better understand their general impact 

on public health. 
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