Research Article

EFFECT OF ORGANIC MANURES ON GROWTH AND YIELD OF ACID LIME

S. Muthulakshmi^{1*} and K. Sundharaiya²

- ¹Dept. of Floriculture & Landscape Architecture, Horticultural College and Research Institute, Periyakulam, Tamil Nadu -625 604, INDIA
- ²Horticultural Research Station, Thadiyankudisai, Perumparai, Tamil Nadu 624 212, INDIA

KEYWORDS: Acid lime, Organic manures, Yield

ARTICLE INFO Received on: 28.02.2019 Revised on: 16.05.2019 Accepted on: 19.05.2019

ABSTRACT

A research was conducted at Citrus Research Station, Sankarankovil to study the effect of organic manures on growth and yield in acid lime during 2017-2019. The trial had been laid out in a farmer's field at Vannikonenthal village, Sankarankovil Taluk, Tirunelveli District. Treatments were imposed in five years old acid lime trees with 8 treatments and 3 replications. Organic manures viz. Vermicompost (10 kg plant⁻¹), Neemcake (15 kg plant⁻¹) and Pressmud (15 kg plant⁻¹) were applied individually and in combination with 50 % RDF (Recommended Dose of Fertilizers). Treatment applied with 100 % RDF (Recommended Dose of Fertilizers) serves as control. The results indicated that plants applied with Vermicompost (10 kg plant⁻¹) + Neem cake (15 kg plant⁻¹) + Press mud (15 kg plant⁻¹) along with 50 % RDF gave more yield with more number of fruits per tree as that of plants applied with 100 % RDF. Pressmud, Vermicompost and Neem cake application had also improved the microbial population of the soil. Cost Benefit Ratio for application of organic manures is on par with 100 % RDF. Based on these results, Press mud (15 kg plant⁻¹) + Vermicompost (10 kg plant⁻¹) + Neem cake (15 kg plant⁻¹) and 50% RDF (Recommended Dose of Fertilizers) can be applied to get higher yield in Acid lime instead of applying 100 RDF (Recommended Dose of Fertilizers).

INTRODUCTION

India is the largest producer of acid lime in the world. In Tamil Nadu, acid lime is cultivated both under rain fed and irrigated conditions in the districts of Dindigul, Tirunelveli, Virudhunagar, Ramnad, Madurai, Tiruchi, Tuticorin and Theni in an area of 7463 ha with a production of 21886 tonnes. Tirunelveli District ranks second in the cultivation of acid lime with an area of 2178 ha and production of 6387 tonnes. The major area of cultivation of acid lime in Tirunelveli District is in Sivagiri, Sankarankovil, Vasudevanallur, Tenkasi, Kadayanallur and Kadayam blocks. Usually acid lime growers do not apply inorganic fertilizers and apply only a very small quantity of organic manures which are not adequate for supply of required nutrients to the tree. As a result, the trees are very poor in health and vigour resulting in low coupled with below average yield of both quality and quantity. Hence, the study had been conducted with the following objectives: to study effect of organic manures viz. Vermicompost, Neem cake and Press mud along with RDF (Recommended Dose of Fertilizers) on growth and yield in acid lime, to standardise the package of organic manures viz. Vermicompost, Neem cake and Press mud along with RDF (Recommended Dose of Fertilizers) for acid lime in Tirunelveli District and Working out the cost benefit ratio.

MATERIALS AND METHODS

The study was conducted at Citrus Research Station, Sankarankovil during 2017-2019. Treatments were imposed in a farmer's field at Vannikonenthal village, Sankarankovil Taluk, Tirunelveli District of Tamil Nadu. Organic manures viz. Vermicompost, Neem cake and Pressmud were applied individually and in combination along with 50 % RDF (Recommended Dose of Fertilizers).

Treatments

- ightharpoonup T₁₋100 % RDF (500: 175: 220 g of NPK plant⁻¹)
- ightharpoonup T₂ 50 % RDF + Vermicompost (10 kg plant⁻¹)
- ightharpoonup T₃ 50 % RDF + Neem cake (15 kg plant⁻¹)
- ightharpoonup T4. 50 % RDF + Press mud (15 kg plant⁻¹)
- ➤ T₅. 50 % RDF + Vermicompost (10 kg plant⁻¹) + Neem cake (15 kg plant⁻¹)

^{*}Corresponding author's E-mail: floripkm@tnau.ac.in

- ➤ T₆- 50 % RDF + Vermicompost (10 kg plant⁻¹) + Press mud (15 kg plant⁻¹)
- $ightharpoonup T_7-50 \% RDF + Neem cake (15 kg plant⁻¹) + Press mud (15 kg plant⁻¹)$
- > T₈ 50 % RDF + Vermicompost (10 kg plant⁻¹) + Neem cake (15 kg plant⁻¹)+ Press mud (15 kg plant⁻¹)

Nitrogen was applied in the month of March where as Phosphorus, Potassium and organic manures were applied in October. Microbial inoculants viz. Azospirillum and Phosphobacteria (200 g each) were applied to all the treatments. All the eight treatments were applied in three replications. In each replication four trees had been taken

for the study. Available Nitrogen, Phosphorus and Potassium content in leaf and soil samples were analysed before and after application of manures. The growth parameters viz. Plant height, Number of branches, Plant spread (North, South) and (East West) were recorded. Canopy volume was calculated by using the formula m ³ = 4/3 a² b (where m ³ = Canopy volume, a = half of the plant height, b = Average of east west and North South plant spread). The yield parameters viz. Number of fruits per plant, fruit weight, fruit length, fruit diameter and fruit yield were recorded. Microbial count of Fungi, Bacteria and Actinobacteria were also observed.

Table 1. Growth parameters in acid lime

Treatments	Plant height (m)		No. of branches		Canopy volume	
	2017-18	2018-19	2017-18	2018-19	2017-18	2018-19
T_1	3.50	3.90	5.0	7.6	18.15	22.23
T_2	4.03	4.50	5.0	6.0	29.79	38.08
T_3	3.48	3.90	5.0	6.0	20.06	24.83
T_4	4.07	4.50	6.67	6.0	32.13	27.24
T_5	4.07	4.50	4.33	5.3	28.11	34.31
T_6	4.00	4.40	4.33	5.3	18.86	27.77
T ₇	3.47	3.80	3.33	4.3	20.98	23.23
T_8	3.47	3.80	4.67	5.0	17.80	23.22
S.Ed	0.15	0.15	0.64	0.64	2.12	363.69
CD (0.05%)	0.33	0.33	1.38	1.38	4.55	NS
CV %	4.34	4.49	16.58	13.65	11.20	

Table 2. Yield parameters in acid lime

Treatments	No. of fruits		Fruit length (cm)		Fruit diameter (cm)	
	2017-18	2018-19	2017-18	2018-19	2017-18	2018-19
T_1	673	690	4.65	4.66	13.40	13.41
T_2	438	446	4.28	4.29	14.23	14.24
T_3	427	435	4.25	4.26	13.60	13.61
T_4	657	674	4.42	4.43	13.50	13.49
T_5	441	450	4.34	4.35	13.80	13.81
T_6	423	431	4.33	4.34	13.90	13.91
T_7	431	439	4.21	4.22	13.30	13.31
T_8	643	655	4.53	4.54	13.80	13.81
S.Ed	14.80	15.13	0.41	0.41	1.33	1.39
CD (0.05%)	30.20	32.47	NS	NS	NS	NS
CV %	3.34	3.52				

RESULTS AND DISCUSSION

Organic manures viz. Vermicompost (10 kg plant⁻¹), Neem cake (15 kg plant⁻¹) and Press mud (15 kg plant⁻¹) were applied along with 50% RDF (Recommended Dose of Fertilizers). Treatment with 100% RDF (Recommended Dose of Fertilizers) served as control. Growth parameters

viz. Plant height, Number of branches, Canopy volume were recorded and presented in table 1.

Maximum plant height of 4.07 cm and 4.50 cm were recorded in T_4 (50 % RDF + Press mud (15 kg plant⁻¹) during 2017–18 and 2018–19 respectively. Plants applied with 100 % RDF (T_1) have more number of branches (7.6)

followed by T_4 (6.67). Canopy volume was maximum in T_2 (38.08) followed by T_4 .

Table 3. Yield parameters in acid lime

Tuestments	Fruit w	eight (g)	Fruit yield (kg)		
Treatments	2017-18	2018-19	2017-18	2018-19	
T_1	45.40	44.50	29.24	29.77	
T_2	44.20	44.20	19.38	19.71	
T_3	43.00	45.20	18.37	18.67	
T_4	43.50	45.20	28.59	29.08	
T_5	39.90	38.80	17.57	17.87	
T_6	41.20	44.40	17.47	17.75	
T_7	42.10	43.20	18.15	18.45	
T_8	44.30	44.30	28.37	28.86	
S.Ed	1.44	3.09	1.02	1.04	
CD (0.05%)	3.10	NS	2.19	2.23	
CV %	4.13		5.66	5.66	

Table 4. Available N, P & K content in leaf samples

Treatments	Nitrogen (kg/ha)	Phosphorous (kg/ ha)	Potassium (kg/ha)
Before application	1.17	0.18	1.38
T_1	2.32	0.22	1.43
T_2	1.07	0.14	1.68
T_3	2.35	0.18	1.34
T_4	1.84	0.21	1.77
T_5	1.92	0.17	1.29
T_6	1.94	0.19	1.41
T_7	1.74	0.18	1.34
T ₈	2.24	0.18	1.00

The yield parameters viz. Number of fruits, Fruit length, Fruit diameter, fruit weight and Fruit yield were also

recorded and presented in tale 2 and 3. More number of fruits (673 & 690) were noticed in T_1 (100% RDF) followed by T_4 (657 & 674) during 2017–18 & 2018–19 respectively. Treatment T_1 (50% RDF + Press mud (15 kg plant⁻¹) recorded high yield of 29.24 kg plant ⁻¹and 29.77 kg plant ⁻¹ followed by T_4 (28.59 kg plant⁻¹ and 29.08 kg plant ⁻¹in 2017–18 & 2018–19 respectively. Fruit length and fruit diameter were non–significant among the treatments. Maximum fruit weight (45.40 g) was observed in treatment T_1 followed by T_8 and T_4 . On statistical analysis, the treatments T_1 , T_4 and T_8 are on par for number of fruits per tree, fruit weight and yield per tree (Perungkotturselvi and John Koilraj, 2015).

Nitrogen, Phosphorus and Potassium content of leaf samples were analysed before and after application of fertilizers and manures (i.e) at harvest stage. High N, P & K content were recorded in leaf samples collected from T_1 (100 % RDF) followed by T_3 and T_4 .

Available soil N, P & K were also analysed before and after application of fertilizers and manures. Organic manures application had improved N, P & K content in soils. N and P content were maximum in T_1 followed by T_2 and T_6 . Microbial activity was found out by taking count of Bacteria, Fungi and Actinibacteria and presented in table 6. Bacterial population was maximum in T_3 followed by T_1 where as fungi and actinobacteria population was found to be more in T_8 . Cost Benefit Ratio was worked and found that it was on par for T_1 , T_4 and T_8 .

Plant height was increased by application of 50 % RDF + Vermicompost (10 kg plant⁻¹) + Neem cake (15 kg plant⁻¹)+ Press mud (15 kg plant⁻¹) (T_2 , T_4 and T_5) than control. Similar results were obtained by application iof Vermicompost 10 kg plant ⁻¹ + Neem cake 5 kg plant ⁻¹ in Acid lime under Malwa Plateau conditions by Ninoma (2013). Vermicompost contains phytohormones viz. Auxin, Gibberellin and Cytokinin which are responsible for significant increase in growth or plant height in the present study.

Table 5. Available N, P & K content in soil samples

Treatments	N (kg/ha)	Rating	P (kg/ ha)	Rating	K (kg/ha)	Rating
Before application	174	Low	21	Medium	465	High
T_1	213	Low	24	High	485	High
T_2	196	Low	12	Medium	337	High
T_3	183	Low	14	Medium	468	High
T_4	168	Low	13	Medium	379	High
T_5	178	Low	11	Medium	348	High
T_6	186	Low	23	High	440	High
T_7	176	Low	15	Medium	380	High
T_8	179	Low	18	Medium	409	High

Treatment T₄ (Pressmud 15 kg plant⁻¹) recorded high yield with more number of fruits per tree. This is in accordance

with the results of Perunkotturselvi and JohnKoilraj (2015). In Ginger also significantly higher rhizome yield was

obtained through application of pressmud (10 t ha⁻¹) as reported by Sharath Pal *et al.*, 2014. The increased yield in the present study might be due to the application of Neem cake and Pressmud. Because neem cake is an excellent soil conditioner and it provides macro nutrients which are essential for plant growth. Pressmud application also improves the available macro nutrient status of the soil.

Table 6. Microbial population

Treatments	Bacteria (x 10 ⁸ CFU/g)	Fungi (x 10 ⁵ CFU/g)	Actinobacteria (x 10 ³¹⁸⁷ CFU/g)
T_1	187	38	41
T_2	216	50	44
T_3	232	47	43
T_4	190	40	39
T_5	158	52	44
T_6	173	50	57
T_7	164	49	45
T ₈	193	52	80

Press mud, Vermicompost and Neem cake application had improved the microbial population of the soil which produce favourable environment for better crop growth and yield in the present investigation. Cost Benefit Ratio for application of organic manures with 50 % RDF (Recommended Dose of Fertilizers) and 100% RDF (Recommended Dose of Fertilizers) is onpar. From the present study, it has been concluded that 50% (Recommended Dose of Fertilizers) can be applied along with Vermicompost (10 kg plant⁻¹) + Neem cake (15 kg

plant⁻¹)+Press mud (15 kg plant⁻¹) instead of 100 % (Recommended Dose of Fertilizers).

Table 7. Cost benefit ratios

Treatments	CBR
T_1	2.0
T_2	1.3
T_3	0.95
T_4	2.0
T_5	1.2
T_6	1.2
T_7	1.3
T ₈	2.0

REFERENCES

Perungkotturselvi, C. and A. John Koilraj. 2015. Organic farming in acid lime plant fruits Citrus aurantifolia at Puliangudi in Nellai District, Tamil Nadu State, India. *Indian Journal of Current Microbiology and Applied Sciences*, 4(9): 576–581.

Ninoma, R. 2013. Integrated nutrient management studies in acid lime under Malwa Plateau conditions. M.Sc. (Horticulture), Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, K.N.K. College of Horticulture, Mandsaur (M.P).

Sharath Pal, M.V., N.K. Hegde, S.I. Hanamashetti and M.S. Kulkarni. 2014. Effect of organic manures on the performance of Ginger under Northern Dry Zone of Karnataka. *Journal of Spices and Aromatic Crops*, 23(1): 121–124.

How to cite this article?

Muthulakshmi, S. and K. Sundharaiya. 2019. Effect of organic manures on growth and yield of acid lime. *Innovative Farming*, **4**(2): 68-71.