Research Article

Article ID: RB0097

Effect of Levels and Sources of Sulphur on Nutrient Uptake, Economics and Post-Harvest Soil Nutrient Concentration of Sesamum (*Sesamum indicum* L.)

P. C. Lallawmzuali*, Lanunola Tzudir and D. Nongmaithem

Dept. of Agronomy, SASRD, Nagaland University, Medziphema, Nagaland (797 106), India

Open Access Corresponding Author

P. C. Lallawmzuali

e-mail: zualteipachuau123@gmail.com

Keywords

Net return, Nitrogen, Phosphorous, Potassium, Sesamum, Sulphur

How to cite this article?

Lallawmzuali *et al.*, 2021. Effect of Levels and Sources of Sulphur on Nutrient Uptake, Economics and Post-Harvest Soil Nutrient Concentration of Sesamum (*Sesamum indicum* L.). *Research Biotica* 3(3), 154-157.

Abstract

A field experiment was conducted at the experimental farm, Department of Agronomy, SASRD, Nagaland University to study sesamum on nutrient uptake, economics and nutrient concentration on post-harvest soil as affected by different levels and sources sulphur. The experiment was laid out in randomized block design (RBD) with three replications. There were ten treatments viz., T_1 (control), T_2 (10 kg gypsum ha⁻¹), T₂ (20 kg gypsum ha⁻¹), T₄ (30 kg gypsum ha⁻¹), T₅ (40 kg gypsum ha⁻¹), T_c (control), T_z (10 kg elemental sulphur ha⁻¹), T_a (20 kg elemental sulphur ha⁻¹), T_{q} (30 kg elemental sulphur ha⁻¹) and T_{10} (40 kg elemental sulphur ha⁻¹). The total Nitrogen (70.72 kg ha⁻¹), Phosphorus (7.91 kg ha⁻¹), Potassium (28.52 kg ha⁻¹) and Sulphur (6.05 kg ha⁻¹) uptake by the plant was recorded highest with 40 kg elemental sulphur ha-1. Treatment T₁₀ recorded the highest net return as well as B:C ratio (%) with Rs. 24,130.40 ha-1 and 1.21 respectively, while T1 and T_c recorded the lowest net return and were statistically at par. The available soil Nitrogen (435.53 kg ha⁻¹) after harvest was recorded highest in T₁ (control). The available soil Phosphorus (48.75 kg ha-1) and Potassium (214.27 kg ha-1) was recorded highest in T_1 (control) and available soil Sulphur (22.15 kg ha⁻¹) was recorded highest in T₁₀.

1. Introduction

Sesamum (*Sesamum indicum* L.) is believed to be one of the most ancient crops cultivated by humans. Sesamum seed has higher oil (46-64%) and protein (25%) content. They are a good source of different minerals like Mg, Ca, Fe, vitamin B₁, *etc.* as well as a good source of both monounsaturated fats and dietary fibres. The average yield of sesamum in India is very low (436 kg ha⁻¹) when compared to other countries in the world (535 kg ha⁻¹) (Anonymous, 2016). The main reasons behind this low productivity are its cultivation in marginal and sub marginal lands mainly under rainfed conditions under little or poor management, low and sub-optimal input conditions. This indicates the scope and importance of adopting better management practices including optimum and balanced fertilization in order to achieve higher productivity.

Sulphur is an important component of plant amino acids, vitamins, enzyme structures and proteins which influence the productivity, quality and total oil content. Oilseed crops are especially sensitive to sulphur deficiency because their demand for sulphur is quite high and produce seeds with a high yield of protein with relatively large quantities of sulphur containing amino acids (Zhao *et al.*, 1997). Among all the

sulphur supplying sources, gypsum and elemental sulphur are most abundantly used in sulphur deficient soils. Hence, this study is attempted to improve the production of sesamum crop through optimum supply of sulphur in Nagaland state.

2. Materials and Methods

The soil texture was found to be clayey loam which was acidic in reaction (4.94). It was found to be high in organic carbon content (1.38%), low in available sulphur content (14.03 kg ha⁻¹) low in available nitrogen content (225.79 kg ha⁻¹), high in available phosphorus content (28.24 kg ha⁻¹) and medium in available potassium content (173.6 kg ha⁻¹). There were 10 treatment combinations with three replications. Two sources of sulphur (Gypsum and Elemental sulphur), four levels of sulphur (10, 20, 30 and 40 kg ha⁻¹) and two control treatment were used. The recommended dose of N, P and K fertilizer i.e., 30 kg ha⁻¹ Urea, 60 kg ha⁻¹ SSP and 30 kg ha⁻¹ MOP was applied as a single basal dose followed by the treatments. The seeds were sown on 19th of July, 2019. The seeds were pre-treated with Bavistin @ 2 g kg⁻¹ of seed and sown manually in lines and then covered them with soil to make it favourable for germination. Seed were sown at the rate of 4 kg ha⁻¹. The soil samples were collected from the post-harvest soil in

Article History

RECEIVED on 09th July 2021

RECEIVED in revised form 25th August 2021 ACCEPTED in final form 26th August 2021

order to evaluate the nutrient status. Cost of cultivation was cultivated on per hectare basis for each treatment by taking into consideration the cost in different operations separately for each treatment. Gross return was estimated considering the monetary value of the economic produce of different treatments based on the prevailing market prices ha-1. Net return for each treatment was estimated by subtracting the total cost of cultivation from gross return. B:C Ratio was calculated by the following formula.

Benefit Cost (B:C) Ratio= Net Return Cost of cultivation

3. Results and Discussion

3.1 Nutrient Uptake

As shown in Table 1, highest nitrogen uptake by seed was recorded in T_{10} (48.48 kg ha⁻¹) which was statistically at par $(47.63 \text{ kg ha}^{-1})$ with T_o (control). The minimum nitrogen uptake was recorded in T₆ (24.85 kg ha⁻¹). Nitrogen uptake by stover showed significant differences due to different levels and sources of sulphur treatment. T₁₀ recorded higher N uptake (22.24 kg ha⁻¹). The lowest N uptake (11.76 kg ha⁻¹) was recorded in T₁. This was in close conformity with Dayanand et al. (2010). Phosphorus uptake by seed was recorded highest in T_{10} (4.65) which was found at par with T_{9} (4.36) and T_{1} recorded the lowest P uptake [2.78]. T₁₀ recorded higher P

uptake (3.26 kg ha⁻¹). The lowest P uptake (1.94 kg ha⁻¹) was recorded in T_1 which was at par with T_6 (2.00 kg ha⁻¹). The highest potassium uptake by seed (9.28 kg ha⁻¹) was recorded in T₁₀ while the lowest (3.14 kg ha⁻¹) was observed in T₁ which was statistically at par (3.70) with T_{6} (control). T_{10} recorded higher K uptake (19.24 kg ha⁻¹). The lowest K uptake (13.30 kg ha⁻¹) was recorded in T₁ (control). It was observed that both sources and levels of sulphur influenced K uptake significantly. The highest sulphur uptake (3.16 kg ha-1) was recorded in T_{10} . However, the lowest (1.62 kg ha⁻¹) was recorded in T_1 (control) which was at par with T₆ (control) [1.88 kg ha⁻¹]. The elemental sulphur source and its increased level must have a significant influence on the uptake of N, P, K and S by the seed. The maximum sulphur uptake by stover (2.89 kg ha-1) was recorded in T₁₀ while the lowest sulphur uptake was recorded in T₁ (1.50 kg ha⁻¹) which was at par with T₆ (control) [1.72 kg ha⁻¹]. The application of sulphur has resulted in higher uptake by the stover (Vaijapuri et al., 2003). The total plant uptake of N and S was recorded highest in T_{10} (40 kg elemental sulphur ha⁻¹) while total K uptake was recorded highest in T₁₀ (40 kg elemental sulphur ha⁻¹) which was at par with T_{q} (30 kg elemental sulphur ha⁻¹). The sources and levels of sulphur were not found to have any significant influence on total uptake of P by sesamum.

Table 1: Effect of sources and levels of sulphur on plant nutrient uptake of N, P, K and S (kg ha⁻¹) in seed and stover of Sesamum

Treatments	Nutr	ient upta	ake in se	ed	Nutri	ent upt	ake in st	over	Total	plant n	utrient u	ptake
	Ν	Р	К	S	Ν	Р	К	S	Ν	Р	К	S
Sources												
S1: Gypsum	33.30	3.57	5.16	2.39	16.81	2.67	16.36	2.17	50.10	6.25	21.53	4.56
S2: Elemental Sulphur	40.44	3.90	6.36	2.63	17.76	2.73	16.92	2.37	58.21	6.63	23.28	5.00
SEm±	0.13	0.02	0.04	0.01	0.06	0.04	0.08	0.01	0.10	0.07	0.05	0.02
CD (p=0.05)	0.81	0.14	0.24	0.07	0.36	NS	0.47	0.09	0.59	NS	0.31	0.14
Levels												
L0: 0 kg ha ⁻¹	27.29	2.85	3.42	1.75	11.97	1.97	13.86	1.61	39.26	4.82	17.28	3.36
L1: 10 kg ha ⁻¹	33.48	3.51	4.41	2.41	15.96	2.44	15.42	2.16	49.44	5.95	19.83	4.57
L2: 20 kg ha ⁻¹	36.68	3.71	5.03	2.57	17.13	2.92	16.73	2.28	53.82	6.63	21.75	4.85
L3: 30 kg ha ⁻¹	41.74	4.17	7.74	2.79	19.99	2.96	18.14	2.54	61.73	7.13	25.88	5.32
L4: 40 kg ha ⁻¹	45.17	4.44	8.22	3.03	21.37	3.21	19.05	2.75	66.54	7.65	27.26	5.79
SEm±	0.50	0.03	0.10	0.01	0.15	0.05	0.11	0.02	0.49	0.07	0.16	0.02
CD (p=0.05)	1.50	0.09	0.29	0.03	0.44	0.15	0.34	0.06	1.46	0.20	0.48	0.07

Note: NS = Non-significant at 5% level of significance

3.2 Economics

It is evident from Table 2 that the highest cost of cultivation was recorded in T_{5} (Rs. 24,810.00 ha⁻¹) followed by T_{4} (Rs. 23,110.00 ha⁻¹). T_1 and T_6 (control) recorded the lowest cost of cultivation (Rs. 18,010.00 ha-1). The highest gross return (Rs. 44,060.00) was recorded from T_{10} followed by T_{9} (Rs.

38,118.57). The highest net return (Rs. 24,130.40 ha⁻¹) and benefit-cost (B:C) ratio (1.21) was obtained in T_{10} (40 kg elemental sulphur ha-1) while lowest benefit-cost ratio was obtained in T_2 with 0.17 and T_1 and T_6 (control) recorded the lowest net return of Rs. 3,741.32 ha⁻¹ and Rs. 4,737.12 ha⁻¹ respectively.

Table 2: Effect of sources and levels of sulphur on the							
economics of sesamum during the study							

Treatments	Cost of cultivation	Gross return	Net return	B:C Ratio			
	(Rs.)	(Rs.)	(Rs.)				
S1L0	18010.00	21751.32	3741.32	0.21			
S1L1	19710.00	23081.54	3371.54	0.17			
S1L2	21410.00	31135.67	9725.67	0.45			
S1L3	23110.00	33442.28	10332.28	0.45			
S1L4	24810.00	36996.22	12186.22	0.49			
S2L0	18010.00	22747.12	4737.12	0.26			
S2L1	18490.00	32297.00	13807.00	0.75			
S2L2	18970.00	35125.89	16155.89	0.85			
S2L3	19450.00	38118.57	18668.57	0.96			
S2L4	19930.00	44060.40	24130.40	1.21			

3.3 Available Nutrient Status of Post-Harvest Soil

It was observed from Table 3 that the pH and organic carbon

content of the soil was not significantly affected by sources of sulphur. The highest available soil nitrogen after crop harvest was recorded in T_6 (435.53 kg ha⁻¹) and the lowest value was recorded in T₁₀ (232.06 kg ha⁻¹). The data also showed that the available nitrogen in the soil was lesser with the increased application of elemental sulphur as compared to gypsum. The highest available soil P is recorded in T_6 (control) which was at par with T_1 (control) and the least available soil P was recorded in T_{10} (27.69 kg ha⁻¹). It is evident that significantly highest available soil K (214.27 kg ha-1) was recorded in T₆ and the lowest available soil K was recorded in T₁₀ (92.40 kg ha⁻¹). It was observed that the highest available soil S (22.15 kg ha⁻¹) was recorded in T_{10} and the lowest available soil S was recorded in T₁ (11.82 kg ha⁻¹). Since, elemental sulphur have higher concentration of sulphur and are subjected to lesser leaching losses, they tends to accumulate in the soil in higher amounts as compared to other sources of sulphur, while releasing S into the soil solution at a slower rate. Therefore, higher available soil sulphur after crop harvest was observed at T₁₀ (elemental sulphur @ 40 kg ha⁻¹). Similar result was also obtained by Raja et al. (2007).

Table 3: Effect of sources and levels of sulphur on soil pH, organic carbon (%) and available N, P and K (kg ha⁻¹) in the soil after harvest of sesamum

Treatments	Soil pH	Organic carbon (%)	Available nutrients in the soil after harvest (kg $ha^{-1)}$					
		-	Ν	Р	К	S		
Sources								
S1: Gypsum	5.81	1.41	318.24	37.87	146.86	14.76		
S2: Elemental Sulphur	5.45	1.47	294.78	35.95	128.42	17.74		
SEm±	0.08	0.03	3.80	0.14	1.22	0.09		
CD (p=0.05)	NS	NS	23.15	0.83	7.44	0.52		
Levels								
.0: 0 kg ha ⁻¹	5.53	1.09	405.93	47.88	197.29	11.08		
L1: 10 kg ha ⁻¹	5.87	1.38	320.69	41.07	164.64	13.85		
-2: 20 kg ha-1	5.72	1.46	304.19	37.15	135.42	16.80		
_3: 30 kg ha ⁻¹	5.53	1.59	260.29	30.15	108.26	18.94		
_4: 40 kg ha ⁻¹	5.50	1.68	241.47	28.32	82.60	20.59		
SEm±	0.14	0.02	2.95	0.43	3.03	0.27		
CD (p=0.05)	NS	0.06	8.85	1.30	9.08	0.81		

Note: NS = Non-significant at 5% level of significance

4. Conclusion

Elemental sulphur @ 40 kg ha⁻¹ is a better source of sulphur in addition to recommended dose of fertilizers as compared to gypsum for improving the productivity of sesamum as well as higher nutrient uptake and nutrient availability under rainfed condition of Nagaland.

5. References

Anonymous, 2016. India oilseeds- area, production and productivity. The Soybean Processors Association of India. Available at: http//www.sopa.org/india-oilseedsarea-production-and-productivity. Accessed on: 19th January, 2020.

- Bray, R.H., Kurtz, L.T., 1945. Determination of total, organic and available forms of phosphorous in the soil. *Soil Science* 59, 39-45.
- Dayanand, Meena, M.L., Shivran, A.C., 2002. Influence of intercrops and sulphur as nutrient uptake and food quality of sesamum. *Indian Journal of Agricultural Science* 72(10), 594-96.
- Hanway, J., Heidal, H.S., 1952. Soil Testing Laboratory Procedures. *Jowa Agriculture* 57, 1-31.
- Raja, A., Hattab, K.O., Gurusamy, L., Vembu, G., Suganya, S., 2007. Sulphur Application on Growth and Yield and Quality of Sesame Varieties. *International Journal of Agricultural Research* 2(7), 599-606.
- Subbiah, B.V., Asija, G.L., 1956. Rapid procedure for the estimation of available nitrogen in the soils. *Current Science* 25, 259-260.

- Tabatabi, M.A., Bremner, J.M., 1970. Comparison of some methods for determination of total sulphur in soil. *Soil Science Society of America Proceeding* 34, 417-420.
- Vaijapuri, V., Amuda, A., Sriramachandrashekaren, M.N., Ravechandran, M., 2003. Effect of sulphur levels on seed quality and nutrient uptake of sesamum. *Advances in Plant Science* 4(3), 327-30.
- Zhao, A., Guo, A., Liu, Z., Pape, L., 1997. Molecular cloning and analysis of *Schizosaccharomycespombe* Reb1p: sequence-specific recognition of two sites in far upstream DNA intergenic spacer. *Nucleic Acids Research* 25(4), 904-1.

