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Introduction
Environmental changes negatively impact the developmental 
biology in plants. Because of its sessile character, plant has 
developed intricate and adaptive mechanism for adapting 
to changing environmental signals. Consequently, both 
agricultural and horticulture suffer a huge crop loss (Irenaeus 
et al., 2023). Thus, plants develop certain mechanisms in 
response to these external cues. Abiotic challenges appear 
in different forms associated with weather conditions like 
rainfall, temperature, irradiation, soil contaminants etc. 
Among these abiotic challenges, drought, water logging, 
high temperature, low temperature, salinity, heavy metals 
etc. impose major threat to plant developmental biology.
A pictorial depiction represents on how different physiological 
responses (Figure 1) operates for acclimatization to the 
external signals due to environmental stress. Plants 
coordinate the adaptation to various abiotic challenges 
through integrated action of different metabolic pathways 
and signalling networks to arrest the stress induced reactive 
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Plants are sessile organisms and face the adverse effect of environmental 
changes. They regulate the adaptations to these stresses through various 
mechanisms. Plant hormones are important regulators that control the 
growth through modulation of several molecules, messengers and other signal 
transduction pathways under different abiotic challenges. Most importantly, 
the downstream metabolic processes are maintained via homeostasis. Current 
developments in molecular biology have improved comprehensive knowledge 
on hormonal regulation of abiotic stress. Here, we converse on the major 
metabolism affected by abiotic challenges mainly drought, heat, salinity 
and cold other than the hormonal regulation of abiotic stress tolerance. The 
mechanistic understanding is really crucial for the crop improvement initiatives.
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oxygen species (ROS) accumulation. Plant hormones 
impart a crucial part in stress response through signal 
transduction pathways apart from its role in regulating the 
morphogenesis, modification and proliferation (Verma et 
al., 2016; Salvi et al., 2021). Current literature highlights 
the detailed function of plant hormones in regulating and 
ameliorating the impact of abiotic stress. In light of this, 
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Figure 1: Plant endurance under abiotic stress
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here we addressed the significance of plant hormones in 
regulating the significant abiotic challenges.
Abiotic Stress and Plant Development
Under optimal conditions, plant development majorly 
targets to produce seeds and finishing its life cycle. However, 
when it encounters certain deviations like environmental 
changes, it has to penalize its developmental biology to 
ensure survival at priority that ultimately causes huge 
loss in crop and yield productivity. Thus, plants face the 
environmental changes at the expense of their growth and 
productivity, also known as growth trade-offs. In the process 
to acclimatize stress, plants activate certain tolerance 
mechanisms. The developmental processes are retarded 
under abiotic stress due to the arrest in certain major 
metabolic pathways. Plants face abiotic challenges starting 
from germination till the end of their life cycle. Water 
scarcity or drought during germination is itself a challenge 
for the plants to start its life cycle. Abiotic challenges like 
water limitation, salinity, high temperature etc. during 
germination reduces water potential, carbohydrate 
metabolism, enzymatic activity, soluble calcium and 
potassium ions and altered hormonal balance (Liu et al., 
2018). During unfavourable circumstances, the beginning of 
plant life cycle is largely coordinated by two major hormones 
viz. gibberellins (GA) and abscissic acid (ABA) along with 
other hormones. Abiotic challenges induce series of physio-
morpho-biochemical modifications that alters metabolism 
and nutrient acquisition leading inhibition of plant growth 
followed by crop yield and quality loss. Although abiotic 
challenges arrest the cellular metabolism, photosynthetic 
apparatus and the redox status of the plants are adversely 
affected impairing plant developmental biology.
The photosynthetic machinery especially the reaction 
centres, PSI (Photosystem I) and PS II (Photosystem II), 
reaction mediated by these photosystems and chlorophyll 
biosynthesis are severely inhibited by abiotic challenges. On 
the downstream the carbon metabolism and its transport is 
also severely affected that in turn impairs the productivity 
of the plant. The major components of photosynthetic 
machinery are also the origin of ROS which irreparably gets 
damaged due to incidence of abiotic challenges. Abiotic 
stress causes the ROS formation disrupting PSI and PSII, 
which ultimately affects the light harvesting complex (LHC) 
(Dietzel et al., 2008; Vainonen et al., 2008; Pesaresi et al., 
2009). The inhibition of D1 protein is observed under salinity 
stress, chilling stress and high-light stress (Allakhverdiev 
et al., 2002; Yang et al., 2018). Non-photochemical 
quenching is an indispensable way to convert excessive 
excitation energy into heat during the light reaction. The 
xanthophyll cycle assists in non-photochemical quenching 
by detoxifying the ROS generated in the plants during 
heat stress, drought and salt stress (Kumar et al., 2020). 
Besides, the crosstalk of phytohormones is important for 
regulation of photooxidative protection of chloroplast 
during stress. Furthermore, hormones like GA, jasmonic acid 
(JA), cytokinins and strigolactones play regulatory role in 
photosynthesis. GA and cytokinin has been found to improve 
PSI and PSII activities and strigolactones regulate the LHC 

(Chauhan et al., 2023). Research conducted by Dobrikova 
et al. (2014) reported that brassinosteroids (BR) regulate 
major metabolic pathways related to LHC.
The major metabolic pathways required for plant 
development leads to ROS accumulation in specific 
organelles such as plastids, peroxisomes, apoplast and 
mitochondria (Rodríguez-Serrano et al., 2016). These 
are metabolic by-products produced in usual conditions. 
However, their level increases as the plants are encountered 
to abiotic stress conditions. Under stress, ROS are the by-
products of disrupted metabolic pathways as well as the 
part of mechanisms of signal transduction responding to 
abiotic stress (Choudhury et al., 2017). Both these ROS 
alters the redox status of regulatory proteins, translation 
and transcription factors as response to stress. However, the 
stress ROS as signalling molecule sets the signal transduction 
that would supress the metabolic ROS generation as an 
acclimation response (Choudhury et al., 2017). The ROS 
generated in chloroplast like singlet oxygen and superoxide 
radicle acts as signal molecule to initiate acclimation 
response such as chlorophyll catabolism, degeneration of 
photosynthetic apparatus, chlorosis, programmed cell death 
etc. by modulating the nuclear gene expression (Wagner 
et al., 2004). Similarly, mitochondrial ROS production is 
mediated through the electron transport system under 
abiotic stress. The peroxisomal ROS accumulation is the 
result of photorespiration and apoplastic ROS generation 
is linked to various mechanisms. Therefore, the production 
of compartmentalized ROS modulates the redox state 
and alters the nuclear gene expression thereby leading 
to downstream change in metabolism and morpho-
physiological stress response. The ROS generation or 
redox state of each compartment as well as the steady 
state level of ROS produces a typical ROS signature which 
varies for different abiotic challenges. Stress signalling 
in plants leads to increased ROS production inducing the 
antioxidant machinery in plants. These enzymes either 
act in coordination or on individual to accentuate the 
accumulation of ROS. Important antioxidant enzymes 
modulate gene expression in reaction to rising ROS levels. 
Mishra et al. (2023) discussed the increase and decrease 
in ROS accumulation under abiotic stress conditions along 
with their mechanism of action. Roy et al. (2017) in wheat, 
Sharma et al. (2018) in rice and Sharma et al. (2024) 
in jute have demonstrated the function of antioxidant 
enzymes under high temperature and drought stress. 
Non-enzymatic enzymes as phenols, flavonoids, ascorbic 
acid, glutathione, tocopherols contribute significantly 
in abiotic stress tolerance. Ascorbic acid being highly 
water soluble, antioxidant plays crucial role in signalling 
pathway (Roy et al., 2023; Mishra et al., 2023; Sharma et 
al., 2024). By scavenging free radicals and regenerating 
tocopherol from the tocopheroxy radical, it helps to 
preserve membranes significantly. Tocopherol, particularly 
α-tocopherol is essential in mitigating potoxidative damage 
by quenching singlet oxygen. Similarly, glutathione, a 
tripeptide antioxidant found predominantly in chloroplast, 
eliminates ROS along with ascorbic acid and NADPH through 
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Halliwell-Asada Pathway (Bagheri et al., 2017). Researchers 
have demonstrated the function of carotenoids as key 
antioxidants, quenching singlet oxygen and neutralizing 
free radicals such as peroxy (ROO•), Hydroxy (•OH) an 
superoxide (O2

•-) thereby protecting plants under abiotic 
stress conditions.
ROS and hormonal interplay control the morphgenesis 
and growth of plant. However, the ROS which were once 
thought to be toxic molecules are now considered as special 
signal molecules allowing plants to adapt stress conditions 
through calcium dependent pathways, MAPKK pathways 
and other hormonal pathways. A study showed that mutants 
with suppressed ROS signalling showed alleviated stress 
indications (Suzuki et al., 2013). The reduction in stomatal 
closure caused by ABA induced ROS generation through 
calcium signalling under drought was associated with the 
decrease in the level of hydrogen peroxide (H2O2) content 
(Mignolet-Spruyt et al., 2016). Under Cadmium stress, 
the H2O2 content affected the auxin distribution including 
transport, biosynthesis and signalling in rice stating that 
auxin acts upstream to auxin signalling in rice (Zhao et 
al., 2012). Conversely, brassinosteroids (BR) promote 
ROS production in plants and these induce tolerance 
by enhancing the build-up of ROS especially H2O2. This, 
in principle, initiates H₂O₂ mediated signalling cascade 
interceding stress tolerance through increase in stress 
regulated genes and transcription factors like dehydrins, 
antioxidants, heat shock proteins (HSPs) etc. (Jiang et al., 
2012). To conclude, redox signalling serves as key indicator 
and regulates stress tolerance ultimately altering the plant 
developmental biology.

Role of Plant Hormones
Under abiotic stress, the hormonal homeostasis is 
reprogrammed to signal the primary metabolism of the 
plants according to different stress conditions (Table 1). 
These hormones regulate developmental biology amongst 
the trade-offs during stress tolerance. To carry out the 
proper functioning of the metabolic pathways, the plant 
signal transduction turns on and optimizes the ratio of 
hormonal content, distribution and crosstalk in such a 
way that the plants perform at its best in the prevailing 
environmental conditions. In this segment we talk about the 
crosstalk of hormone under different conditions.
Drought Stress
Drought and climate change, in the context of agriculture 
and horticulture, is responsible for 20-30% of global yield 
loss but in extreme cases, it can exceed to 50% in all over 
the world. Thus, targeting the kind of the physiological 
response at the cellular level will ensure better amelioration 
strategies for engineering drought tolerance in crop species. 
One of the key signalling molecules is the abscisic acid (ABA) 
which has been thoroughly explored for drought response 
in many species. Metabolics, genomics transcriptomics 
profiling of plants under drought suggested the function 
of ABA responsive genes and accumulation of typical 
metabolites including proline in Arabidopsis under drought. 
This was accompanied by decrease in amino acids content, 
alteration in ethylene and GA signalling (Skirycz et al., 2011). 
ABA dependent transcriptional regulation degraded leaf 
starch content to increase the sugar required for osmotic 
adjustment (Thalmann et al., 2016). The dynamic alteration 

Table 1: Role of hormone in regulating plant growth
Hormones Aberration Effect References
Auxin Relocation of PIN3 auxin 

transporters to the lower sides 
of the same cells

Redirect the auxin flow to this side of the 
root, causing differential auxin distribution, 
asymmetric growth and ultimately 
downward bending of the root.

Friml et al., 2002

Gibberellin Loss-of-function mutation in 
four genes (SbCPS1, SbKS1, 
SbKO1, SbKAO1) involved in the 
early steps of GA biosynthesis

Severe dwarfism but also in abnormal culm 
bending.

Ordonio et al., 2014

Cytokinin Stacking one, two and three of 
the genes encoding a subfamily 
of histidine kinases (CRE1, AHK2 
and AHK3) that function as 
cytokinin receptors

Including inhibition of root elongation, 
inhibition of root formation, cell 
proliferation in and greening of calli and 
induction of cytokinin primary-response 
genes.

Higuchi et al., 2004

ABA Reduced abscisic acid (ABA) 
production (sitiens)

Increased cuticle permeability, which 
is positively correlated with disease 
resistance. Furthermore, perturbation of 
ABA levels affects pectin composition.

Curvers et al., 2010

Melatonin Silenced SlCOMT1 gene 
expression

Decrease in the individual fruit weight, 
seed number per fruit.

He et al., 2023

Brassinosteroid BR insensitive mutants Compact rosette structure, decreased plant 
height and reduced root system, delayed 
development and reduced fertility.

Schröder et al., 2014

147



© 2024

in ABA responsive manner is evident under drought 
(Heinemann et al., 2021). Cysteine and tryptophan plays a 
vital role in regulating ABA mediated signalling (Batool et al., 
2018; Chen et al., 2019; Liu et al., 2022; Soda et al., 2022). 
A study showed that increase in sulfate level in root xylem 
sap of maize under drought condition regulated the stomatal 
opening and closure. The sulphur content in the xylem sap 
controls the availability of cysteine and tryptophan which 
consequently alters the guard cells controlling the stomatal 
opening under drought (Batool et al., 2018).
Furthermore, other hormones’ interaction with ABA 
regulates plant growth through alteration by transcriptional 
and post translational mechanism under drought. Hormones 
affecting developmental biology and additionally play a 
crucial role in abiotic stress tolerance. Auxin in coordination 
with ABA regulates the directional growth of root towards 
moisture primarily driven by auxin pathway (Taniguchi et 
al., 2010; Xu et al., 2013). Furthermore, drought stress 
affects auxin biosynthesis, auxin transport and auxin signal 
transduction pathway. Several studies have reported that 
major auxin biosynthesis genes alleviate drought impact in 
many crops. Auxin applied exogenously has been shown to 
upregulate the ABA promoters in Arabidopsis and soybean 
(Lee et al., 2012; Kim et al., 2013; Park et al., 2019).
This clearly depicts the association of ABA with auxin 
in growth trade-offs under stress (Shi et al., 2014). The 
ameliorative effects of exogenous auxin application were 
observed on white clover and rice under drought tolerance 
(Sharma et al., 2018; Zhang et al., 2020). Drought tolerance 
was reduced by loss of function mutants in auxin signalling 
genes such as IAA5, IAA6 and IAA19, which are again linked 
to ABA-regulated genes (Salehin et al., 2019). Auxin mainly 
controls the drought stress by regulating the ROS along 
with ABA. Thus, a better understanding of the crosstalk is 
essential to find insights into developmental biology under 
drought.
Drought further reduces GA accumulation, biosynthesis, 
signalling, water use efficiency and cell membrane stability 
(Wang et al., 2008). The GA biosynthetic genes in susceptible 
soybean cultivar compared to the tolerant showed down 
regulation suggesting that GA has major function in 
conferring drought tolerance (Bashir et al., 2019). The 
alteration of root elongation (lateral) and reduction of 
GA2-oxidases under drought is a crosstalk of GA and IAA 
(Chen et al., 2019). Under stress conditions, GA2-oxidases 
(GA2ox), along with DELLA domain proteins such as GAI (GA 
Insensitive) and RGL1 (Repressor of GA1-3 Like), play key roles 
in GA biosynthesis and signalling. GA2ox enzymes induce 
dwarfism by inhibiting bioactive GAs (Lo et al., 2017; Rieu 
et al., 2008). Further the DELLA domain proteins, the stress 
survivors (Achard et al., 2007; Zhou and Underhill, 2017), 
functions by suppressing cellular activity (Olszewski et al., 
2010; Claeys et al., 2012). High cytokinins, related to delayed 
senescence and source sink associations, have important 
relation with photosynthesis and stress regulation. The 
over expression of rate limiting cytokinin biosynthesis gene 
IPT (ISOPENTENYL TRANSFERASE) and related promoters 

shows delayed leaf senescence, delayed flowering (Ma, 
2008) resulting in alleviated drought stress response. IPT 
gene expression accompanied with a maturation- and 
stress-inducible SARK promoter increased the cytokinin 
level in monocots and dicots (Rivero et al., 2007; Peleg and 
Blumwald, 2011; Qin et al., 2011). Developed transgenic rice 
and tobacco exhibited modifications in hormonal synthesis 
and regulatory pathway, leading to altered photosynthesis 
and source-sink relationship, ultimately enhancing yield 
under water stressed condition (Peleg and Blumwald, 2011); 
(1-aminocyclopropane-1-carboxylate) under osmotic stress 
are known to arrest (Skirycz et al., 2011) through ERF/AP2 
transcription factors resulting in reduced cell proliferation 
activities. Studies show that ERF5 and ERF6 deactivate GA via 
GA2ox6 inhibiting leaf proliferation and cell activity (Dubois 
et al., 2013). GA levels in response to ACC levels modulate 
ERF transcription factors increases further on exposure 
to drought stress. Further BR also regulates the drought 
stress metabolism. However, an antagonist relationship 
exists between these two hormones. For example, RD26 
(Responsive to Dessication 26), a NAC transcription 
component, positively regulates ABA-responsive genes 
(Fujita et al., 2004) while it is negatively regulated by BES1 
(BRI1-EMS-SUPPRESSOR 1), a transcription factor in BR 
signalling pathway (Yu et al., 2011). It was further found out 
that drought induced ABA signalling or BR growth signalling 
was turned on or off by the transcriptional repression and 
protein-protein interaction of RD26 and BES1 (Ye et al., 
2017). Moreover, the interaction of other hormones with 
ABA, such as salicylic acid, jasmonic acid, strigolactones, 
melatonin and polyamines, remain important to mediate 
stress tolerance. While change in the endogenous level 
of ABA is the first response as the roots sense moisture 
deficit, the acclimation to drought and the growth trade to 
maintain survival is the crosstalk of all hormones and the 
metabolic pathways.
High Temperature
High temperature is one of the rising concerns of global 
warming and imposes heat stress on plants that further 
alters the plant developmental biology (Ding et al., 2020). 
High temperature induces physio-biochemial changes that 
affect molecular mechanism resulting in morphological 
changes in crop developmental biology. It causes protein 
misfolding and generation of ROS which are toxic to the 
plants. These misfolded proteins must be degraded and 
ROS must be scavenged to impart heat stress tolerance. 
Thus, plant activates the heat stress responsive genes that 
encode the chaperones and ROS scavengers. Among these, 
heat shock factors (HSFs) and heat shock proteins (HSPs) 
are master regulators that confer thermotolerance to 
plants (Ohama et al., 2017). The misfolded proteins in rice 
and Arabidopsis under heat stress have been highlighted 
to be renatured by HSF encoded HSPs (Kotak et al., 
2007). Other transcription factors like bZIP and NAC are 
concerned in the removal of misfolded proteins and the high 
temperature activated antioxidant enzymes removes the 
ROS (Ding et al., 2020). Apart from these, plant hormones 
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mediated response and signal transduction is one of the 
effective systems for detecting and responding to elevated 
temperatures. A heat induced morphological phenomenon 
known as thermomorphogenesis is one of the crucial 
responses of auxin under increased temperature (Casal and 
Balasubramanian, 2019). PIF4 (PHYTOCHROME INTERACTING 
FACTOR 4), known for regulating photomorphogenesis, also 
regulates thermo-morphogenesis at higher temperature by 
regulating the auxin biosynthesis in Arabidopsis. The auxin 
biosynthesis mutant, yuc8, showing a reduced hypocotyl 
elongation confirms the interaction of PIF4 with auxin in 
the regulation of the stem growth (Sun et al., 2012). Further 
auxin transport also affects Thermo-morphogenesis. The 
polar auxin transport inhibitor NPA (1-naphthylphthalamic 
acid) has been shown to impede thermal responsiveness 
under high temperature (Stavang et al., 2009). Besides auxin, 
gibberellins (GA) and brassinosteroids (BR) also significantly 
contribute to thermomorphogenesis. The transcript level 
of GA biosynthesis genes like AtGA20ox1 and AtGA3ox1 
are increased in hypocotyl at slightly high temperatures 
to regulate cellular proliferation (Stavang et al., 2009). 
Again, under high temperature the hypocotyl elongation 
was observed with the breakdown of DELLA proteins RGA 
at the hypocotyl zone. The interaction of DELLA proteins 
with PIF4, BZR1 (Brassinazole-Resistant 1; a transcription 
factor in BR signalling) and ARF8 (Auxin Response Factor 
8; a transcription factor in auxin signalling) performs a 
vital function in modulating cell elongation (de Lucas et al., 
2008; Feng et al., 2008; Bai et al., 2012; Oh et al., 2014). To 
further understand in depth, genetic and pharmacological 
studies was conducted and the results showed that for 
thermomorphogenesis response BR acted downstream to 
auxin and GA (Stavang et al., 2009; Ibanez et al., 2022). For 
instance, the elevated temperature induced root growth 
is the BR mediated response rather than primary function 
of auxin and other factors involved in root development 
through the disruption of BR signalling pathway (Martins 
et al., 2017). Thus, thermomorphogenesis is a response 
coordinated by crosstalk of auxin, GA and BR.
Auxin also plays a crucial role in pollen development and it 
was found that reduction in auxin content and biosynthesis 
under high temperature was associated with male fertility 
in barley and rice (Sakata et al., 2010; Sharma et al., 2018). 
Not only the endogenous auxin content and biosynthesis but 
the signalling is also impaired under high temperature stress. 
The arf17 knockout mutant, an auxin signalling mutant, 
showed disrupted male fertility with increased callose 
deposition around the pollen tetrad (Yang et al., 2013). Thus, 
auxin is a fundamental regulator of male fertility and pollen 
development under elevated temperatures, mediated by 
its production, transport and signalling. Additionally, the 
exogenous IAA (Indole-3-acetic acid) or auxin application 
of under drought and heat condition improved the pollen 
viability, male fertility and yield of barley and rice (Sakata et 
al., 2010; Sharma et al., 2018). High temperatures reduce GA 
biosynthesis by downregulating GA20ox and GA3ox genes, 
while simultaneously enhancing ABA biosynthesis through 
the upregulation of ABA1/ZEP (Zeaxanthin Epoxidase) and 

NCED (Nine-cis-Epoxycarotenoid Dioxygenase 2) transcripts. 
The reduction in endogenous GA in seeds thus activated SPY 
(SPINDLY, an O-GlNAc transferase) and inhibits germination 
at higher temperatures (Toh et al., 2008). Jasmonic acid has 
recently emerged as a significant regulator of heat stress. An 
increase in jasmonate content was noticed in Arabidopsis 
when exposed to high temperature (Clarke et al., 2009) 
whereas others found it to be reduced (Du et al., 2013). 
Consequently, JA signalling was also affected on exposure 
to heat stress (Sharma et al., 2016). Research indicates 
that gibberellin biosynthesis genes as GA20ox and GA3ox 
are promoted under heat stress via increased levels of 
melatonin content. Melatonin mitigates H2O2 accumulation 
by stimulating antioxidant enzyme action (Marta et al., 2016; 
Wang et al., 2022). Furthermore, salicylic acid regulates the 
membrane stability under heat stress by modulating the 
actions of antioxidant enzymes. The exogenous salicylic acid 
was found to ameliorate the negative impact of thermal 
stress in tomato and Medicago (Jahan et al., 2019; Wassie 
et al., 2020). Although both salicylic acid and jasmonic acid 
are known for defense response against biotic stresses, 
their role in abiotic challenges is emerging. Heat stresses 
have diverse morphological response but all are mediated 
through generation of ROS and plant hormones mostly 
modulate the redox status and ROS homeostasis through 
efficient mechanisms to enhance the thermal tolerance in 
plants.
Salinity Stress
Soil salinity has been a threat worldwide and has increased 
drastically to pose a global threat on agricultural yield 
(Zandalinas et al., 2021) due to increase in temperature and 
the consequent water scarcity resulting in salt accumulation 
(Gamalero and Glick, 2022). Plant developmental biology 
is impaired under salinity conditions (Mustapha et al., 
2024). With the change in the soil pH due to accumulation 
of ions such as Na+, Mg2+, Ca2+, Cl-, SO4

2-, Cl-, HCO3
-, the 

root development is affected at the first instance. Salt 
stress accompanies uptake of toxic ions. Consequently, 
the reduced uptake of water results in water deficit, ion 
imbalance and ion toxicity. The dry biomass of plants is 
severely reduced attributable to the decrease in shoot and 
root growth most likely due to the impairment in cell wall 
biosynthesis. The continuous uptake and accumulation of 
ions like Na+ increases competition for the essential element 
like K+ which leads to K+ deficiency and lower K+/Na+ ratio 
in the plants thereby leading to a series of physiological 
and biochemical changes like reduction in chlorophyll and 
protein content, increase in stress metabolite and ROS 
accumulation and alteration in antioxidant machinery (Aizaz 
et al., 2024). To combat this effect, plants employ different 
mechanisms like ion exclusion, modification at the root zone, 
ion accumulation in vacuole, alteration in signal transduction 
through transcription factors or hormonal network. Plant 
hormones regulate the plant metabolism under salt stress 
through osmoregulation, redox and ionic homeostasis, along 
with their crosstalk with major transcription factors (Xiao 
and Zhou, 2023). Salt stress responses are mainly triggered 
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by excess accumulation of Na+, changes in intracellular Ca2+ 
levels and ROS generation (Zhao et al., 2021).
As a key regulator of osmotic stress, ABA plays an 
important role in the salt stress response. Salinity increases 
endogenous ABA levels, subsequently activates SnRKs 
(Sucrose Non-Fermenting-1 Related Kinase-1). SnRKs further 
phosphorylate AREB/ABF (ABA-Responsive Element-Binding 
Protein/ABRE-Binding Factor) transcription components, 
leading to the regulation of stomatal closure under osmotic 
stress (Cai et al., 2017). Salt stress subsequently increases 
the calcium ion concentration in the cytosol that imbalances 
the ion equilibrium state. However, under salt stress, the 
Ca2+ ions are restricted for release and accumulate in the 
roots. ABA assists in releasing these Ca2+ ions from the 
intracellular storage by signalling the activation of plasma 
membrane-bound channels (Edel and Kudla, 2016). To 
maintain the ion balance between Na+ and K+, K+ uptake is 
balanced with ABA-SnRK2.6-activated potassium channel 
KAT1 and Ca2+-CBL1/9-CIPK23 signalling module-activated 
AKT1 (K+ TRANSPORTER 1) Arabidopsis that causes the 
reduction Na+:K+ ratio (Yang and Guo, 2018). In addition 
to ABA, ethylene is also thought to be a master regulator 
of plants response to salinity. Increase in ethylene and its 
precursor ACC is linked with salt stress (Gieniec et al., 2024). 
Salinity tolerance of ACC treated Arabidopsis plants showed 
enhanced salinity tolerance at different developmental 
stages (Cao et al., 2007). Moreover, upregulation of 
ethylene biosynthesis anf its content was found in eto1 
and eto2 mutants under salinity stress (Jiang et al., 2013). 
Ethylene signalling is also important in addition to ethylene 
biosynthesis under salt stress. Studies conducted by Cao 
et al. (2007), Jiang et al. (2013) and Wilson et al. (2014) 
found that enhanced salinity tolerance is a result of loss in 
function of ethylene receptor. Interestingly, etr1 different 
phenotypes depicting their crosstalk in providing salt stress 
tolerance. This confirms that ABA-ethylene crosstalk is a key 
regulator of salt tolerance in plants (Wilson et al., 2014). ABA 
under salt stress also induces the cytokinin and strigolactone 
mediated plant response. Strigolactone mediated signal 
transduction is increased under salt-stress conditions. 
The reduction in cytokinin and therefore, the increase the 
sensitivity of the plants to ABA under salt stress is reported 
(Yu et al., 2020). Further the auxin biosynthesis also seems 
to be boosted up under salinity stress. The auxin biosynthesis 
genes (NIT1, NIT2 and YUC4) were upregulated followed by 
NaCl treatment in Arabidopsis (Cackett et al., 2022). Studies 
by Liu et al. (2015) and Fu et al. (2019) have highlighted the 
role of PIN1, PIN3 PIN 7 in auxin transport and salt stress 
disrupts the expression of the genes. Interestingly, the 
expression of certain auxin biosynthesis genes has increased 
in Cucumus sativus and potato (Kim et al., 2013; Yan et al., 
2016) under salt stress. PIN1 also plays important function 
in the growth of plant epidermal cells under drought and 
salt stress conditions (Bawa et al., 2022). Similar to auxin 
transport, the auxin signalling is also inhibited that further 
impairs the auxin mediated response under salt stress. The 
auxin receptors TIR1 (TRANSPORT INHIBITOR RESPONSE 1) 
and AFB2 (AUXIN-SIGNALLING F-BOX 2) were downregulated 

under salt stress, indicating a growth trade-off (Iglesias et 
al., 2014; Yu et al., 2020). The hormones thus mediate the 
morphological, physiological and biochemical response to 
salt stress by transforming their biosynthesis, transport, 
signalling and their cross talk.
Cold Stress
Cold stress greatly affects the plants growth, productivity 
and survival, while also restricting the geographical 
distribution of species (Uemura et al., 1995; Kidokoro et al., 
2022). The plant’s exposure to temperature range of 0-15 
°C imposes chilling stress while below that of 0 °C imposes 
freezing stress. This results in a sequence of physiological 
changes in plants such as membrane damage, ion leakage, 
altered redox homeostasis, reduced water uptake, osmotic 
stress, inter- and intra-cellular ice crystal formation, protein 
destabilization and denaturation, loss of chlorophyll and 
photosynthetic activity, retarded plant developmental 
biology that ultimately results to lower yield. However, the 
plants adapted to environment with lower temperatures 
have evolved mechanisms called as the cold acclimation 
to manage its survival. One of the responses involves 
mobilization of reserves from photosynthetic organs to 
storage tissue (Thorsen and Höglind, 2010). Further the 
cold hardening is the physiological response that allows 
these plants to endure the subzero temperature (Song et al., 
2012). The low temperature signal is sensed by the plants 
that initiate the signal transduction cascade to alter the gene 
expression required to adapt to cold temperatures. Studies 
show that plants that are adapted to freezing tolerance 
can adapt upto -30 °C while the non-acclimated plants 
can tolerate upto -5 °C (Raza et al., 2023). Moreover, the 
tropical crops like maize (Zea mays L.) and tomato (Solanum 
lycopersicum L.) are unable to tolerate freezing (McKhann et 
al., 2008). Plant hormone plays important to in adapting to 
cold stress like any other abiotic stress. The major target of 
plants’ responses to cold stress is increasing the membrane 
fluidity, stabilization of protein structure and maintains the 
redox homeostasis to maintain the primary metabolism for 
growth and survival. However, the phenotypic response of 
cold acclimated plants differs from the non-acclimatized 
plants and depends on the intensity of cold exposure. It 
includes chlorosis, reduction in leaf expansion, necrosis 
and reduced biomass (Enders et al., 2019). At the gene 
regulation level, cold stress primarily triggers the ICE1-
CBF-COR transcriptional cascade, where ICE1 (Inducer of 
CBF Expression) activates CBFs/DREBs (C-repeat Binding 
Factors/Dehydration-Responsive Element Binding Protein). 
In turn, these bind to the promoters of COR (Cold-Regulated) 
genes, initiating their transcription and enabling cold stress 
adaptation (Shi et al., 2015; Ding et al., 2019; Yang, 2022). As 
in case of any other stress, ABA plays a crucial role here. The 
exposure of cold increases the endogenous ABA content that 
acts as intracellular signal to maintain the protein synthesis. 
Further, the transcription of genes for antioxidant enzymes 
has been reported to be increased by exogenous ABA, which 
in turn enhances cold stress tolerance in large numbers of 
plants (Qin et al., 2019) by enhancing the activities of POX, 
CAT, SOD, APX and GR, the accumulation of H₂O₂ in wheat 
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is reduced, even under extreme temperatures ranging 
from 0 °C to -24 °C (Yu et al., 2020). ABA interacts with 
polyamines to induce cold stress tolerance in rice (Zheng 
et al., 2023). Likewise, BRs also regulate the membrane 
fluidity, maintains redox levels by regulating the activities 
of antioxidant enzymes, photosynthetic activities under 
cold stress. BRs play a pivotal role in maintaining membrane 
fluidity under stress. Due to its similar structure to plasma 
membrane, the BRs maintain the plasma membrane 
flexibility in surface structure (Filek et al., 2017). Kim et 
al. (2013) and García-Pastor et al. (2020) reported certain 
mutants of Brassinosteroids which showed enhanced cold 
tolerance by upregulating the expression of ABA receptors 
which resulted in reduced membrane injury altering fatty 
acid profile and enhancing antioxidant enzymes. Studies 
show that extreme cold stress increased levels of auxin, 
cytokinin and salicylic acid level and decreased jasmonic 
acid and ABA levels in wheat (Wang et al., 2024). Moreover, 
the transcriptomic and metabolic profiling have suggested 
a number of genes, metabolites and biochemical pathways 

to be modulated under cold stress. For example, cold stress 
positively integrates ABA signal transduction and sugar 
metabolism pathways improve the cold stress tolerance 
of Argyranthemum frutescens (Xu et al., 2023). Thus, the 
omics approaches when integrated with gene manipulations 
have high potential to provide insights into phytohormone 
associated pathways and their role in cold stress.
Growth hormones are thus important and integral part of 
stress signal transduction pathway. Moreover, literature has 
evidences that exogenous application of these hormones 
also regulates the stress mediated response (Table 2). 
Most of these exogenous applications of hormones have 
ameliorative effect on stress. These function mostly 
through quenching of ROS and enhancing the antioxidant 
machinery using vital signal transduction pathways as well 
as modulating their biosynthesis, transport and signalling 
under stress. The protecting effect of these hormones thus 
may be exploited at larger scale to alleviate the negative 
consequences of climate change.

Table 2: Exogenous application of different hormones and their effect on plants
Plant Hormone Species/ 

Crops
Stress Response References

Auxin Rice Drought Exogenous auxin and genetic manipulation of 
auxin synthesis and signalling will be useful to 
mitigate spikelet sterility and stabilize the grain 
yield of rice under drought and heat stresses.

Sharma et al., 
2018

Zea mays L. Salt stress IAA mitigated the adverse effects of salinity on 
maize plants. The most promising effect of IAA or 
K and P on alleviation of salt stress on maize was 
found when they were applied in combination.

Kaya et al., 
2013

Gibberellic Acid Wheat 
seeds

Salt stress A positive result on germination in salinity 
conditions was found after priming of wheat seeds 
with GA3.

Abido et al., 
2019

Cytokinin Maize Drought Maize foliar spraying with cytokinin solution at 
different concentrations in vegetative phase of 
development was very effective in alleviating 
drought-imposed adverse effects whereas 
cytokinin had very little effect at the reproductive 
phase.

Akter et al., 
2014

Rice Drought Exogenous spraying of rice plants at tillering and 
grain-filling stages with synthetic cytokinin phenyl 
urea improved the stomatal conductance of 
leaves, which was reduced by drought.

Gujjar et al., 
2020

ABA Zea mays L. Drought Foliar treatment with ABA increased drought 
tolerance in young corn plants and induced the 
accumulation of glycine betaine, enhanced water 
content and dry biomass.

Zhang et al., 
2012

Wheat 
grains

Drought ABA priming of wheat grains induced drought 
tolerance, increased soluble proteins content and 
productivity.

Khan et al., 
2012

Elymus 
nutans

Cold 
tolerance

Melatonin induction of antioxidant protection was 
realized through the ABA-dependent signalling 
pathway.

Fu et al., 2017
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Plant Hormone Species/ 
Crops

Stress Response References

Salicylic acid Rice Cadmium 
stress

Treatment of rice with SA in low and high 
concentration had a positive effect on 
metabolism, developmental biology of plants, 
both in control and stress conditions.

Mostofa et al., 
2019

Maize Salt stress SA foliar treatment under salt stress improved 
the yield, increased an antioxidant protection and 
stabilized the photosynthetic activity of corn.

Tahjib-Ul-Arif et 
al., 2018

Brassinosteroids Rice Metal stress After foliar treatment with BSs, the toxic effect 
of heavy metals in rice was reduced and partially 
limited; an increase in photosynthetic pigments 
content, promoted photosynthesis, dry biomass 
accumulation, decreased H2O2 content and 
increased antioxidant enzyme activity was found.

Sharma et al., 
2016

Melatonin Maize Cadmium 
stress

The effects of exogenous melatonin and N 
application on maize under Cd stress revealed 
notable enhancements in root length, volume 
and biomass, alongside a reduction in Cd 
accumulation.

Ma et al., 2021

Barley Polymetallic 
stress toxicity

Exogenous melatonin reduces polymetallic stress 
toxicity in barley, by modulating circadian genes, 
regulating rhizosphere microbial communities 
and boosting antioxidant activity, serving as key 
defensive mechanisms.

Jiang et al., 
2022

Cotton Drought Melatonin application significantly improved the 
translocation of carbon assimilates to drought-
stressed anthers.

Hu et al., 2020

Jasmonic Acid Soybean Salinity Increased root fresh and dry weights, chlorophyll 
content, photosynthesis rate and transpiration 
rate.

Yoon et al., 
2009

Wheat Drought Increased grain, biological yield and wheat 
adaptability.

Anjum et al., 
2016

Brassica 
napus

Heavy metal 
toxicity

Enhanced antioxidant defence system, secondary 
metabolite and reduced arsenic contents.

Farooq et al., 
2016

Conclusion
To survive in abiotic stress conditions, plants implement 
a range of biochemical, morphological, physiological and 
cellular adaptations. The regulation of stress-mediated 
response is significantly influenced by plant hormones, 
particularly ABA. In most of the cases, it regulates responses 
by interacting with other hormones. Controlling primary 
metabolism depends much on the interaction of hormones, 
transcription factors and the signal transduction system. 
Understanding these intricate relationships will help us to 
better know hormonal control in plant development under 
stressful circumstances. Genetic engineering and genome 
editing tools help to create climate-smart varieties even 
more by means of this understanding. On the mitigation 
front, plant hormones have been studied for their exogenous 
application to minimize stress-induced damage, with 
potential for large-scale commercial use. However, clear 
understanding the hormonal regulation under abiotic stress 
requires more efforts for crop improvement program and 

enhances agricultural productivity.
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